Meteorologische Modellierung - MI · Meteorologische Modellierung Introduction to Numerical...

Post on 31-Oct-2019

7 views 0 download

Transcript of Meteorologische Modellierung - MI · Meteorologische Modellierung Introduction to Numerical...

1

Frank Lunkeit

Meteorologische Modellierung

Introduction to Numerical Modeling

(of the Global Atmospheric Circulation)

0. Introduction: Where/what is the problem and basics

1. The (linear) evolution (decay) equation (discretization in time)

2. One-dimensional linear advection (discretization in time and space)

3. One-dimensional linear diffusion and one-dimensional linear transport equation

4. Nonlinear advection and 1d nonlinear transport equation (Burgers-equation)

5. More dimensions (grids)

6. Design of an atmospheric general circulation model (AGCM)

(7. An example: qg barotropic channel (weather prediction)) next semester

Outline

Frank Lunkeit

2

References

D. R. Durran: Numerical Methods for Wave Equations in Geophysical

Fluid Dynamic, Springer 1999, ISBN:0-387-98376-7.

G.J. Holtiner & R.T. Williams: Numerical Prediction and Dynamic

Meteorology, Second Edition, John Wiley & Sons 1980, ISBN: 0-471-

05971-4.

D. Randall: An Introduction to Atmospheric Modeling,

http://kiwi.atmos.colostate.edu/group/dave/at604.html

Frank Lunkeit

Introduction to Numerical Modeling

0. Introduction: The Problem and Basics

Frank Lunkeit

3

,..),,(1

TvuFx

Pfv

y

uv

x

uu

t

ux

Nonlinear (quasi-linear) coupled partial differential equations

(without a known analytic solution)

Example: Two dimensional flow

,...),,(1

TvuFy

Pfu

y

vv

x

vu

t

vy

y

v

x

u

yv

xu

t

,...),,( TvuFy

vx

ut

RTP

pcR

P

PT

0

Eq. of motion

Eq. of motion

Continuity eq.

First law of thermodynamics

Eq. of state

Pot. temperature

The Problem

Frank Lunkeit

Example: First law (1-d, p=const.,…)

t

T

x

Tu

2

2

x

TK

,...),( uTF

local

change

with time

advection diffusion other forcing

first

derivative

in time

first

derivative

in space

Second

derivative in

space

?

The Problem The Problem

Frank Lunkeit

4

From theory (the equations) to the numerics:

a) continuous functions -> discrete values

b) differential (integral) equations -> algebraic equations

Tasks:

a) choice of the discretization

b) calculation (representation) of the derivatives

Approaches (Algorithms):

- grid point methods (finite differences)

- series expansion (spectral method and finite elements)

Evaluation of a method:

- consistency, accuracy, convergence and stability

Numerical Solution of (Partial) Differential Equations

Frank Lunkeit

T

T(s)

s

s = t, x, y, z,…

T

s

{

∆s sj sj+1 sj-1

a) continuous function -> discrete values

∆s defines the resolution

Example: The Grid Point Method Example: The Grid Point Method

Frank Lunkeit

5

T

T(s)

s

s = t, x, y, z,…

T

s

{

∆s sj

sj+1 sj-1

b) derivatives -> finite differences (e.g. from Taylor-expansion)

...|)()()2

...|)()()1

sds

dTsTssT

sds

dTsTssT

s

s

...)()(

)1 from1

s

sTsT

ds

dT jj

...)()(

)2 from1

s

sTsT

ds

dT jj

Central differences

Forward differences

Backward differences

...2

)()()2)1 from

11

s

sTsT

ds

dT jj

Example: The Grid Point Method

Frank Lunkeit

derivatives -> analytical derivatives of the basis-functions

T*n differentiable orthogonal (Basis-) functions (Fourier-series;

Legendre Polynomials). The resolution is given by the number of

modes n

T

s

T*2(s)

T

T(s)

s

s = x, y, z,…(t)

+

T

s

T*1(s)

n

nn

ds

dTa

ds

dT *

)()( * sTasTn

nn

Example: Series Expansion -The Spectral Method

Frank Lunkeit

6

T

T(s)

s

s = x, y, z,…(t)

T

s +

example

F1,F2,… arbitrary function which is only locally non zero

Derivatives -> depending on the function

T

s

T

s

+

+ …. T(s)=aF1(s)+bF2(s)+….

F1(s)

F2(s)

F3(s)

Example: Series Expansion –Finite Elements

Frank Lunkeit

Evaluation: Consistency

ds

dT

s

T

s

0limThe discretization must converge to the differential:

Example: forward difference:

ds

dTs

ds

Td

ds

dT

s

sTssT

s

ds

Td

ds

dT

s

sTssT

s

ds

Tds

ds

dTsTssT

ss

...

2lim

)()(lim

...2

)()(

...2

)()()(

2

2

00

2

2

2

2

2

s

sTssT

s

T

)()(

Consistency from Taylor-expansion:

Frank Lunkeit

7

Frank Lunkeit

Evaluation: Accuracy

Accuracy: Smallest power of ∆s in the deviation from the truth

Example: forward differences

)(

...2

)()(

...2

)()()(

2

2

2

2

2

sOds

dT

s

T

s

ds

Td

ds

dT

s

sTssT

s

ds

Tds

ds

dTsTssT

s

sTssT

s

T

)()(

Taylor-expansion

=> forward differences are of first order accuracy

a: Accuracy (order of accuracy) of the discretization

b (mostly): Accuracy (order of accuracy) of the scheme

Considering the whole equation, i.e. including the ‚right hand side‘ (see, e.g.,

Section ‘Evolution (decay) equation’)

Evaluation: Convergence

Convergence: Convergence of the error to 0 for small ∆s:

0)()(lim0

tTtT As

Error: Deviation of the numerical solution (T) from the truth (analytical solution; TA)

Error measure (Norm)

a) Euclidean (quadratic) Norm:

b) Maximum Norm:

2/1

1

2

2

N

j

j

jNj

1max

Examples

Frank Lunkeit

8

Frank Lunkeit

or: A scheme is unstable if the numerical and the analytical solutions diverge with

time:

Stability: A scheme is stable if the difference between the numerical and the

analytical solution is bounded:

Evaluation: Stability

t

A tTtT )()(

Stability analyses: various methods (e.g.):

Direct (heuristic),

Energy Method and Von Neumann Method (see advection equation)

ttCtTtT A )()()(

(most important for practical use)

If TA(t) is bounded:

ttCtT )()(

t

tT )(

stable

unstable

Interrelation (Lax Equivalence Theorem):

‚For a consistent scheme stability is a necessary and sufficient condition for

convergence‘.

Stability may depend on ∆s

0. Introduction: The Problem and Basics

Summary:

• Reason to do numerics: No analytic solution of the problem

• Methods: Grid point method, spectral method, finite elements (,…)

• Finite Differences: forward, backward, central

• Evaluation: consistency, accuracy, convergence and stability

0. Introduction: The Problem and Basics

Frank Lunkeit

9

1. The (Linear) Evolution (Decay) Equation (Discretization in Time)

Introduction to Numerical Modeling

Frank Lunkeit

The (Linear) Evolution (Decay) Equation

FaTt

T

equation:

note: with a imaginary, i.e. a=ib, und complex T, T=TR+iTI an oscillation

equation results: e.g. inertial oscillation:

fut

vfv

t

u

)2 , )1

if

tivu

3) with

)2)3Im( );1)3Re( since

Frank Lunkeit

10

Frank Lunkeit

Analytical Solution

FaTt

T

a

FatTtT )exp()(

equation:

Describes the exponential decay of an

initial perturbation ∆T=T0-F/a (T0=initial

value) to the stationary solution F/a. time

scale: 1/a

solution:

example:

T0=0, F=1, a=0.05

initial value problem (T0 needed; eq. is first order in time)

Numerical Solution

FaTt

T

a) Discretization in time: t -> t0+n ∆t (∆t: timestep; n: integer)

T T(t)

t

T

t

{

∆t tn tn+1 tn-1

Tn Tn+1

Tn-1

timestep ∆t must be chosen adequately (physically meaningful)!

(continuous) (discrete)

Frank Lunkeit

11

Numerical Solution

FaTt

T

T

t

{

∆t tn tn+1 tn-1

Tn Tn+1

Tn-1

t

TT

t

T nn

1

t

TT

t

T nn

1

Centered differences

Forward differences

Backward differences

t

TT

t

T nn

2

11

Improper since T(t) known and T(t+∆t)

needed

Two level scheme (Einschritt-Verfahren)

Three level scheme (Zweischritt-Verfahren)

b) Derivatives -> finite Differences

Frank Lunkeit

Frank Lunkeit

Numerical Solution

FaTt

T

c) dealing with the ‚right hand side‘ (the tangent)

);(Tft

T

general: equation )(1 Tf

t

TT nn

discretization (two level)

Choice of T in f(T): )(1n

nn Tft

TT

Explicit (Euler)

)()( 11

nlinnnl

nn TfTft

TT

Implicit

Semi-implicit

)( 11

n

nn Tft

TT

T

t

{

∆t tn tn+1 tn-1

Tn Tn+1

Tn-1

(fnl=nonlinear part; flin=linear part)

12

Explicit (Euler)

)()( 11

nnnnnn TftTTTf

t

TT

Discretization:

Tangent (gradient) at tn , i.e. computed from Tn

T

t tn tn+1 tn-1

Tn Tn+1

Tn-1

evolution (decay) equation: )(1 FTatTT nnn

Frank Lunkeit

Implicit

)()( 1111

nnnn

nn TftTTTft

TTDiscretization:

Tangent (gradient) at tn+1 , i.e. computed from Tn+1 but used at tn.

T

t tn tn+1 tn-1

Tn Tn+1

Tn-1

evolution (decay) equation: at

FtTTFTa

t

TT nnn

nn

111

1

A re-arrangement of the equation is necessary to obtain Tn+1!

Frank Lunkeit

13

Two Level Scheme: Explicit (Euler)

)(11 FTatTTFaT

t

TTnnnn

nn

)lim(0 t

T

t

T

t

Consistency ?

t

Tt

t

T

t

T

t

TT

t

t

T

t

T

t

TTt

t

Tt

t

TtTttT

t

nn

t

nn

...2

limlim

...2

...2

)()(

2

2

0

1

0

2

2

1

2

2

2

Yes, from Taylor-expansion:

Accuracy (order) of the discretization: first order (Error goes with ∆t)

Frank Lunkeit

Two Level Scheme: Explicit (Euler)

)(11 FTatTTFaT

t

TTnnnn

nn

Accuracy (order) of the scheme?

ErrtTat

tTttTA

AA

)(

)()(Ansatz: insert the

analytic solution

Taylor-expansion: n

A

n

n

n

AAt

T

n

ttTttT

1 !

)()()(

Insert the Taylor-

expansion: )(

)(!

)()(

1 tTat

tTt

T

n

ttT

Err A

A

nn

nn

A

11

1

)!1(

)(

nn

nn

t

T

n

tErr => Err= O(1)

(here with F=0)

Since t

TtaT A

A

)(

Frank Lunkeit

14

Frank Lunkeit

Two Level Scheme: Explicit (Euler)

)(11 FTatTTFaT

t

TTnnnn

nn

Stability t

A tTtT )()( ?

))exp()()exp()( 0 tanTtntTatTtT AA (F=0)

ntaTtntTtaTttT )1()()1()( 00

t

A tTtTAta )()(12=> for (unstable)

=> choice of ∆t such that ∆t ≤ 1/a !

analytically:

numerically:

=> Amplitude increases/diminishes with factor ntaA )1(

(stable) for

)1( 21 Atabut for

bounded )()(12

t

A tTtTAta

+/- jumps

Convergence ? Yes (from Lax equivalence theorem) )0)()(lim(0

tTtT At

Note:

)( 0tTT

)()exp()1()1( 2tOtantanta n

Frank Lunkeit

Two Level Scheme: Implicit

Convergence? Yes

Consistency?

Accuracy (Order)? First order scheme (i.e. error grows with ∆t)

at

FtTTFTa

t

TT nnn

nn

111

1

yes, like explicit

Stability?

with F=0: nta

tTtntT

ta

tTttT

)1(

)()(

)1(

)()(

For all ∆t, since A < 1

but ∆t >1/a not appropriate to the problem!

=> Amplitude diminishes with factor ntaA

)1(

1

ttCtTtT A )()()(=>

=> implicit always stable

15

Two Level Scheme: Crank-Nicolson

Consistency?

Accuracy (Order)?

FTgTgat

TTnn

nn

))1(( 11

yes, like explicit und implicit

(g = 1 : explicit; g = 0 : implicit)

ErrttTgtTgat

tTttTAA

AA

)]()1()([

)()(Insert analytical solution:

Taylor-expansion: n

A

n

n

n

AAt

T

n

ttTttT

1 !

)()()(

Insert Taylor-expansion: )]!

)()()(1()([

)(!

)()(

1

1

n

n

nn

AA

A

nn

nn

A

t

T

n

ttTgtgTa

t

tTt

T

n

ttT

Err

)1

1(

!

)(

11

1

ng

t

T

n

tErr

nn

nn

=> for g= 1,0 (ex., im.): Err= O(1); for g=0.5: Err=O(2))

(with F=0)

=0 for n=1

and g=0.5 }

Frank Lunkeit

Two Level Scheme: Crank-Nicolson

FTgTgat

TTnn

nn

))1(( 11

Stability?

with F=0:

n

tag

tgatTtntT

tag

tgatTttT

))1(1(

)1()()(

))1(1(

)1()()(

For all ∆t, |A| < 1 (denominator > numerator)

but: ∆t >1/a not appropriate to the problem

=> Amplitude changes with factor

n

tag

tgaA

))1(1(

)1(

=>

=> always stable (for g <1)

))()1()(()()( ttTgtTgtatTttT

=> Convergence

ttCtTtT A )()()(

Frank Lunkeit

16

Frank Lunkeit

Two Level Scheme: 4th order Runge-Kutta

4321 226

1)()( KKKKtTttT

),( tTfdt

dTGeneral equation:

Runge-Kutta (4th order):

),)((

)2

,2

)((

)2

,2

)((

)),((with

34

23

12

1

ttKtTftK

tt

KtTftK

tt

KtTftK

ttTftK

Decay equation: on t)dependent explicitly(not )(),( TfFTatTf

Order: Err=O(∆t4)

Stability: Stable for 1|2462

1|443322

tatata

ta

Frank Lunkeit

Two level scheme: 4th order Runge-Kutta

4321 226

1)()( KKKKtTttT

),)(( ),2

,2

)((

)2

,2

)(( ),),((

342

3

121

ttKtTftKt

tK

tTftK

tt

KtTftKttTftK

Idea: Average of tangents for different T (T(t), T(t)+K1/2, T(t)+K2/2, T(t)+K3)

tn

T

t tn+1

T(t)

T(t)+K1/2 T(t)+K2/2

T(t)+K3 f(T(t))=K1/ ∆t

f(T(t)+K1/2)=K2/ ∆t

f(T(t)+K2/2)=K3/ ∆t

f(T(t)+K3)=K4/ ∆t

with ‚artificial‘ base points T(t)+Ki

Expensive since f(T) needs to be computed 4 times

17

Three Level Schemes

...6

|2

)()(

...6

|2

||)()(

...6

|2

||)()(

2

3

3

3

3

32

2

2

3

3

32

2

2

t

dt

Td

t

ttTttT

dt

dT

t

dt

Tdt

dt

Tdt

dt

dTtTttT

t

dt

Tdt

dt

Tdt

dt

dTtTttT

t

ttt

ttt

General: three level schemes do not only consider time t und t+∆t but also time t-∆t.

e.g. From Taylor-expansion:

=> Discretization is consistent, 2nd Order (Err=O(∆t2))

Decay equation: FtTat

ttTttT

)(

2

)()(Leap frog

Frank Lunkeit

Leap Frog

))((2)()()(2

)()(FtTatttTttTFtTa

t

ttTttT

i.e. evaluation of the gradient at t for step T(t-∆t)-> T(t+∆t)

t T(t-1) T(t)

Δt

T(t+1)

dT/dt = F - aT

t T(t-2)

Δt

T(t) T(t-1)

dT/dt = F - aT

T(t+1)

chronology:

Step n:

Step n+1:

Two time levels are needed (t-1 and t)!

Frank Lunkeit

18

Frank Lunkeit

Leap Frog

))((2)()()(2

)()(FtTatttTttTFtTa

t

ttTttT

Stability (Computational Mode)?

nnn TatTT 2 :)0F(with 11

121 nnn TTT Assumption: T changes each time

step by factor λ 1112 2 nnn TatTT

i.e. two solutions: 2/122

2,1 1 tata

For ∆t ->0 : λ1=1 (physical since correct); λ2=-1 (unphysical)

For ∆t > 0: physical mode 0 < λ1 < 1 (attenuation)

computational Mode λ2 < -1 i.e. oscillating instability!

Leap Frog not suited for damped (dissipative) systems!

Leap Frog: Unstable Computational Mode

T

t 1

ttttt ATTtaTTT 111 2

Leap-Frog initialization T0=0 ; T1<0

t=2 T2=T0-AT1= 0-AT1 > 0

t=3 T3=T1-AT2=T1-A(T0-AT1)=T1(1+4A2) < T1

t=4 T4=T2-AT3 > T2

2 3 4

Frank Lunkeit

19

Frank Lunkeit

Three Level Scheme: Adams-Bashforth(2)

FttTtTa

t

tTttT

))()(3(

2

)()(

gradient by averaging gradient from T(t) and gradient from ‚extrapolated‘ T‘(t+∆t)

(=T(t)+(T(t)-T(t-∆t)))

stability (computational mode)?

2)

2

31()3(

2 :)0F(with 111 at

Tat

TTTat

TT nnnnnn

121 nnn TTT

i.e. two solutions:

2/1

2

2,14

)2

31(

22

)2

31(

tata

ta

for ∆t ->0 : λ1=1 (physical, correct solution); λ2=0 (unphysical)

for ∆t > 0: physical mode 0 < λ1 < 1 (damped)

computational mode 0 < λ2 <1 (damped) => stability!

2)

2

31(2 atat

consistent and 2nd order (Err=O(∆t2))

1. The Decay Equation: Discretization in Time

Summary:

• Decay (linear evolution) equation: first order in time, initial value

• Schemes: implicit, explicit, semi-implicit, two-level, three-level

• Specific schemes: Euler, Crank-Nicolson, Runge-Kutta, Leapfrog, Adams-Bashford

• Computational mode

• Leapfrog unstable for dissipative systems!

The (Linear) Evolution (Decay) Equation

Frank Lunkeit

20

2. One-Dimensional Linear Advection (Discretization in Time and Space)

Introduction to Numerical Modeling

Frank Lunkeit

The Linear 1-d Advection Equation

x

Tu

t

T

equation: u=const.

analytical solution: )(),( utxftxT with any function f

example: Superposition of waves

with wave number k and

phase velocity u

k

k utxikTtxT ))(exp(),(

hyperbolic, first order in time and space: initial and boundary conditions needed

02

22

2

2

f

x

Te

t

Td

x

Tc

xt

Tb

t

Ta

hyperbolic: b2-4ac > 0

parabolic: b2-4ac = 0

elliptic: b2-4ac < 0

Frank Lunkeit

21

Numerical Solution: Spectral Method

x

Tu

t

T

Idea: transformation of T into new basis functions which are differentiable orthogonal

functions of x => derivations in space can be calculated analytically.

N

Nk

k ikxtTxtT )exp()(),(Example: Fourier-series

Tk(t) = time dependent (complex) Fourier coeff.; N = considered modes (resolution)

(N<< ∞ => T might not be perfectly represented)

)exp()()exp()(

ikxtTikuikxt

tTk

N

Nk

N

Nk

k

Insert into advection equation: =>

=> 2N+1 uncoupled ordinary differential equations kk iukTt

T

Frank Lunkeit

Spectral Method

Analytical solution:

kk iukTt

T

x

Tu

t

T

kk iukTt

T

Similar to the evolution (decay) equation but with imaginary a=iuk

and complex T (oscillation equation)

)exp(0 iuktTT kk

=> complete solution of the advection eq: ))(exp(0 utxikTT k

k

(as expected)

=> local: oscillation, global: non dispersive waves with phase velocity u

Frank Lunkeit

22

Frank Lunkeit

Spectral Method: Explicit

kk iukTt

T

x

Tu

t

T

Numerical solution: Analog to evolution (decay) eq. but: different characteristics

example: explicit (Euler) )()()(

tiukTt

tTttTiukT

t

T

Stability?

)( since 3

)(1error Phase b)

12

)(1)(1A with increases Amplitude a)

)3

)(1(

3

)()arctan( and

)(1)1(with

)exp()()1)(()(

)()()(

2

22

23

2

tuklyanalyticaltuk

tuktuk

tuktuk

tuktuktuk

tuktiukA

iAtTtiuktTttT

tiukTt

tTttT

A

A

N

always unstable

slower and k-dependent, i.e. numerical dispersion

(one wave k only,

index k omitted)

Frank Lunkeit

Spectral Method: Implicit

kk iukTt

T

x

Tu

t

T

example: implicit )()()(

ttiukTt

tTttTiukT

t

T

Stability?

)( since 3

)(1error Phase b)

decreases Amplitude a)

)3

)(1(

3

)()arctan( and

)(1

1with

)exp()()1(

)()(

)()()(

2

23

2

tuklyanalyticaltuk

tuktuk

tuktuktuk

tukA

iAtTtiuk

tTttT

ttiukTt

tTttT

A

A

N

always stable but k-dependent damping,

i.e. numerical diffusion

slower and k-dependent, i.e. numerical dispersion

23

t T(t-1) T(t)

Δt

T(t+1)

dT/dt=-iukT

t T(t-2)

Δt

T(t) T(t-1)

dT/dt=-iukT

T(t+1)

chronology:

Step n:

Step n+1:

Leap frog: n

nn iukTt

TTiukT

t

T

2 11

Recall:

Spectral Method: Leap Frog

Frank Lunkeit

Spectral Method: Leap Frog

Leap frog: n

nn iukTt

TTiukT

t

T

2 11

Stability?

)(2)()()(2

)()( ttTiukttTttTtiukT

t

ttTttT

22 )(1012)()(with tuktiuktiuktTttT

phase) ofout 180 mode (-) onal(computati

(faster) )6

)(1()

)(1arctan(

1 :error phase c)

neutral) modes(both 11)( with b)

mode) (-) nal'computatio' and )( (physical solutions Two a)

2

2

2

tuk

tuk

tuk

tuk

tuk

Leapfrog appropriate (but numerical dispersion); computational mode bothers

Frank Lunkeit

24

Leap Frog: Computational Mode

iukTt

T

equation: with k=0 (advection of the zonal mean) 0

t

T

1)(1 ) change (amplitude b)

)()(02

)()( (Leapfrog) a)

2

tuktiuk

ttTttTt

ttTttT

0

a)

...)6()4()2( TtTtTtT initial condition: T(t=0)=T0 even Δt correct

problem: T(Δt) needed but unknown (in most cases computed with Euler).

let T(Δt)=T0+E (E=small error) 2

)1()2

()( :solution complete 0

EETtnT n

2 :-1)( mode nalcomputatio b)

)2

(:1)( mode physical a) 0

E

ET

the computational mode is determined by the initialization error (E) only

Frank Lunkeit

Frank Lunkeit

Leap Frog: Robert-Asselin Filter

Modification of the leap frog scheme:

Computation of T(t) (or T(t-Δt)) by weighted averages of T(t+Δt), T(t) and T(t-Δt)

Calculation role:

)()( );()( 3.

.) ( ))()(2)(()()( 2.

))((2)()( 1.

**

**

*

tTttTttTtT

constfilterttTtTttTtTtT

tTftttTttT

step t

step t+1

t T*(t-1) T(t) Δt T(t+1)

dT/dt = f(T(t))

T*(t)

t T*(t-1) T(t) Δt T(t+1)

dT/dt = f(T(t))

T*(t)

25

Frank Lunkeit

Leap Frog with Robert-Asselin Filter

iukTt

T

)2( b)

2 a)

1

*

1

*

*

11

ttttt

ttt

TTTTT

tukTiTT

Stability?

1

*

*

11

2)221(

2

ttt

ttt

TtukiTT

tukTiTT

Tt+1 from a) insert into b)

(plus rearrange):

*

1

*

1

2221

12

t

t

t

t

T

T

tuki

tuki

T

T

old

Matrix-formulation:

new transition-matrix

XX AEigenvalue problem

02221

12

tuki

tuki

Eigenvalues λi from

2/122

2

2/122

1

)()1()(

)()1()(

tuktiuk

tuktiuk

=>

• For (uk∆t)2 <(1- γ)2 the scheme is always stable!

• For ∆t ->0 : λ1=1 (physical, neutral); λ2=2 γ-1 (computational, damped)

• For ∆t > 0 : |λ2|< |λ1|<1, i.e. both modes damped, stronger for computational

• Damping k dependent (larger k stronger damp.): Numerical diffusion

• Numerical dispersion (k dependent phase error)

Grid Point Method: Finite Differences

x

Tu

t

T

Discretization in space and time, i.e. space and time derivatives are approximated

by differences.

Two level schemes (explicit):

x

TTu

t

TT

x

Tu

t

Tn

j

n

j

n

j

n

j

2

11

1

centered differences

x

TTu

t

TT

x

Tu

t

Tn

j

n

j

n

j

n

j

1

1

downstream (u>0)

x

TTu

t

TT

x

Tu

t

Tn

j

n

j

n

j

n

j

1

1

upstream (u>0)

n = time; j = space

Frank Lunkeit

26

Finite Differences

Two level scheme (Einschritt-Verfahren): accuracy and order

)()()!

)()1(

!

)((

!

)(

2

!

)()1(

!

)(

!

)(

2

!

)()1(),(

!

)(),(),(

!

)(),(

2

),(),(),(),(

2

2

1

2

1

2

1

xOtOx

T

n

x

x

T

n

xu

t

T

n

t

x

Tu

t

TErr

x

x

T

n

x

x

T

n

x

ut

t

T

n

t

Err

Errx

x

T

n

xtxT

x

T

n

xtxT

ut

txTt

T

n

ttxT

Errx

txxTtxxTu

t

txTttxT

nn

nnn

nn

nn

nn

nn

n

nnn

n

nn

n

nn

n

nnn

n

nn

n

nn

a) centered differences:

2nd order in Δx

1st order in Δ t

Frank Lunkeit

)()(!

)()1(

!

)(

!

)()1(),(),(),(

!

)(),(

),(),(),(),(

2

1

2

1

xOtOx

T

n

xu

t

T

n

t

x

Tu

t

TErr

Errx

x

T

n

xtxTtxT

ut

txTt

T

n

ttxT

Errx

txxTtxTu

t

txTttxT

nn

nnn

nn

nn

n

nnn

n

nn

)()(!

)(

!

)(

),(!

)(),(),(

!

)(),(

),(),(),(),(

2

1

2

1

xOtOx

T

n

xu

t

T

n

t

x

Tu

t

TErr

Errx

txTx

T

n

xtxT

ut

txTt

T

n

ttxT

Errx

txTtxxTu

t

txTttxT

nn

nn

nn

nn

n

nn

n

nn

Finite Differences

Two level scheme: accuracy and order

b) Downsteam:

c) Upsteam:

1st order in Δx

and Δ t

1st order in Δx

and Δ t

Frank Lunkeit

27

Finite Differences: Stability

x

Tu

t

T

Two level scheme: Stability

x

TTu

t

TT n

j

n

j

n

j

n

j

2

11

1

a) centered differences: )(2

11

1 n

j

n

j

n

j

n

j TTx

tuTT

1. Energy Method

general: take a (scalar) quadratic norm for the total ‚energy‘ (E) in the space state of the

system and show that E remains bounded with time.

j

jTE 2)(Here:

(1)

square (1) and sum up:

j

n

j

n

j

n

j

j

n

j TTTT 2

11

21 ))(()( x

tu

2

j

n

j

n

j

n

j

n

j

n

j

n

j TTTTTT 2

11

2

11

2 )()(2)(

cyclic boundary conditions:

j

n

j

n

j

n

j

n

j

j

n

j TTTTT ))()((2)()( 11

22221

j

n

j

j

n

j

n

j TTT 22

11 )()(

Schwarz‘sche inequality:

j

n

j

j

n

j TT )()( 221=> unstable

Advantage: applicable also for non linear problems. Disadvantage: definition of E needed

Frank Lunkeit

Frank Lunkeit

Finite Differences: Stability

x

Tu

t

T

Two level scheme: Stability

x

TTu

t

TT n

j

n

j

n

j

n

j

2

11

1

a) centered differences: )(2

11

1 n

j

n

j

n

j

n

j TTx

tuTT

2. Von Neumann Method General: Linearize the problem. Replace dependence in space by Fourier expansion

(analytical). Investigate the ‚amplification factor‘ A of one time step (Tn+1=ATn). The scheme is

stable if |A|≤1.

xikj

k

kj etTtT )()(Here: already linear, Fourier-expansion:

(1)

Insert into (1): x

tu

Advantage: Relatively easy. Disadvantage: Linearization

linear -> only one k to consider

i

xikxik

eAA

xkieeA

)sin(1)(1

)( )1()1( xjikxjiknxikjnxikjn eeTeTeAT

21

22 ))(sin1( xkA ))sin(arctan( xk with

ikk etTAttT )()( Numerical solution (k):

1. Amplification factor |A| > 1 => unstable =>

tuk2. Phase error since (=analytical solution)

28

Frank Lunkeit

Finite Differences: Stability

x

Tu

t

T

Two level scheme: Stability analysis

x

TTu

t

TT n

j

n

j

n

j

n

j

1

1

b) Downstream: x

TTtuTT

n

j

n

jn

j

n

j

11

21

))1))(cos(1(21( xkA

))cos(1(1

)sin(arctan

xk

xk

Von Neumann method xikj

k

kj etTtT )()( Tn+1=ATn ) ; investigate (

Insert into (1): x

tu

i

xik

eAA

xkixkeA

)sin())cos(1(1)1(1

)( )1( xikjxjiknxikjnxikjn eeTeTeAT

with

ikk etTAttT )()( Numerical solution (k):

1. amplification factor |A| > 1 => unstable =>

tuk2. Phase error since (=analytical solution)

(1)

Frank Lunkeit

Finite Differences: Stability

x

Tu

t

T

Two level scheme: Stability analysis

x

TTu

t

TT n

j

n

j

n

j

n

j

1

1

c) Upstream: x

TTtuTT

n

j

n

jn

j

n

j

11

21

))1))(cos(1(21( xkA

))cos(1(1

)sin(arctan

xk

xk

Von Neumann method

Insert into (1): x

tu

i

xik

eAA

xkixkeA

)sin())cos(1(1)1(1

)( )1( xjikxikjnxikjnxikjn eeTeTeAT

with

(1)

Stable for 1A 1)1((211)1))(cos(1(21 xk 0))cos(1( since xk

10

x

tu=> Upstream stable for Courant-Friedrich-Levy criterion

100)1(2

x

tu

= Courant-number

Tn+1=ATn ) ; investigate ( xikj

k

kj etTtT )()(

29

Frank Lunkeit

Finite Differences: Upstream

One level scheme: Upstream x

TTtuTT

n

j

n

jn

j

n

j

11

21

))1))(cos(1(21( xkA

))cos(1(1

)sin(arctan

xk

xk

with

ikk etTAttT )()( Numerical solution (one wave k):

with u > 0

- |A|<1 => Numerical diffusion (for μ<1; stronger damping for larger k; O(μΔx2))

- Phase error k-dependent => Numerical dispersion (slower; O(Δx2))

x

tu

For small Δx:

...2

)1(12

)1(1

))1(1())1))(cos(1(21(

222

21

2221

txukxk

xkxkA

...36

1...36

1

))cos(1(1

)sin(arctan

2222222222 xk

x

tuxktuk

xkxkxk

xk

xk

Error

Frank Lunkeit

Finite Differences: Leap Frog

Three level scheme: Leapfrog x

TTu

t

TT

x

Tu

t

Tn

j

n

j

n

j

n

j

22

11

11

Stability:

1)sin(2

)(1

)(

)(

2

2

)1(1)1(1112

11

11

xkiAA

eeAA

eTeTAeTeTA

TTTT

xikxik

xjiknxjiknxikjnxikjn

n

j

n

j

n

j

n

j

• Stable (neutral; |A| = 1) for (ut/x)2 1 (Courant-Friedrich-Levy criterion)

• Phase error => Numerical dispersion

• Computational Mode (-) => Robert-Asselin Filter

...

6)(sin1

)sin(arctan and 333

33

22xk

xktuk

xk

xk

ieAxkxkiA )(sin1)sin( 22

1for 1with

2

2

x

tuA

x

tu

Von Neumann method Tn+1=ATn xikj

k

kj etTtT )()( ) ; investigate (

+ = physical mode

30

Frank Lunkeit

(Semi-) Lagrange Method

x

Tu

t

T

Idea: During advection the property (here T) of a particle/volume remains constant:

=> New T distribution from parcel re-distribution by advection

Explicit: New parcel positions from velocities

Implicit: Old parcel positions from velocities

0dt

dT

tuxttxxn )(1

tuxtxxn )(

T typically at fixed grid => interpolation (Semi-Lagrange) =>diffusion

u

x(t+∆t)

=x3

x(t)

T(x1) T(x2)

T T

One-Dimensional Linear Advection

• Numerical methods: Spectral, finite differences and semi-Lagrange

• Stability analysis: Energy method, Von Neumann method

• Numerical diffusion: Amplitude damping (wave number dependent)

• Numerical dispersion: Error in phase velocity (wave number dependent)

• Important parameter: Courant-number (ut/x)

• Courant-Friedrich-Levy criterion

Summary

Frank Lunkeit

31

3. One-Dimensional Linear Diffusion and One-Dimensional Linear Transport Equation

Introduction to Numerical Modeling

Frank Lunkeit

The (Linear) Diffusion Equation (Heat Equation)

2

2

x

TK

t

T

equation (one dimensional):

K=const.= Diffusion coeff.

an analytic solution:

)exp()exp(),( 2

0 tKkikxTtxT damped wave (wave number k):

Exponential decay of the

amplitude dependent on k2

(the shorter the faster)

(parabolic, first order in time,

second order in space)

Initial and boundary values needed

Frank Lunkeit

32

Numerical Solution: Spectral Method

2

2

x

TK

t

T

N

Nk

k ikxtTxtT )exp()(),(T as Fourier-series:

)exp()()exp()( 2 ikxtTkKikx

t

tTk

N

Nk

N

Nk

k

Insert =>

=> 2N uncoupled ordinary differential equations kk TKkt

T 2

Numerical solution similar to decay equation

Frank Lunkeit

Frank Lunkeit

Grid Point Method: Finite Differences

2

2

x

TK

t

T

Discretization for second derivative in space:

2

11

22

2 2)(2)()(

x

TTT

x

xTxxTxxT

x

T jjj

1iT iT 1iT

xx x xx

x

TT

x

T ii

1

x

TT

x

T ii

1

x

T

xx

T2

2

a) from discretization of x

T

)()(2)()(

...2

)()(

...2

)()(

2

22

2

2

22

2

22

xOx

xTxxTxxT

x

T

x

Tx

x

TxxTxxT

x

Tx

x

TxxTxxT

b) from Taylor expansion

2

2

x

T

33

Finite Differences

2

2

x

TK

t

T

Possible discretizations (two level schemes)

a) Explicit (forward in time centered in space; FTCS): 2

11

1 2

x

TTTK

t

TT n

j

n

j

n

j

n

j

n

j

b) Implicit: 2

11

1

1

1

1 2

x

TTTK

t

TT n

j

n

j

n

j

n

j

n

j

c) Crank-Nicolson: 2

11

2

11

1

1

1

1 2)1(

2

x

TTTKg

x

TTTgK

t

TT n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

2

11

2

2 2

x

TTT

x

T jjj

with

Note: Leap frog is unstable

Frank Lunkeit

Frank Lunkeit

Finite Differences

Forward in Time Centered in Space; FTCS

),(!)1(

!!

),(2),(),(),(),(

2

2

2

xtOErrErrx

x

T

n

x

x

T

n

x

Kt

t

T

n

t

Errx

txTtxxTtxxTK

t

txTttxT

n

nnn

n

nn

n

nn

)2

(sin4

1)1)(cos(2

1))2(1( 2

222

xk

x

tKxk

x

tKAee

x

tKTAT xikxiknn

=> stable for 14

12

x

tKA

For small Δx: )1())2

(4

1( 22

2

1 tKkTxk

x

tKTT nnn

analytical: ...)1()exp( 221 tKkTtKkTT nnn

Accuracy/order:

Stability: Von Neumann method Tn+1=ATn xikj

k

kj etTtT )()( and (

convergence

)

34

The (Linear) Transport Equation (Advection and Diffusion)

2

2

x

TK

x

Tu

t

T

equation (one dimensional):

An analytical solution:

)exp())(exp(),( 2

0 tKkutxikTtxT

damped traveling wave

(2nd order parabolic)

Frank Lunkeit

Finite Differences

2

2

x

TK

x

Tu

t

T

Previous knowledge: FTCS improper for advection; Leap frog improper for diffusion

2

11

1

1

111

11 2

22 x

TTTK

x

TTu

t

TT n

j

n

j

n

j

n

j

n

j

n

j

n

j

=> mixed scheme:

Leap frog für Advektion FTCS für Diffusion

More general:

Time splitting method:

Partitioning of tendencies and different numerical treatments

Climate models (ECHAM, PlaSim): Adiabatic part (leap frog) und diabatic parts (Euler or impl.)

Frank Lunkeit

35

Frank Lunkeit

Finite Differences

2

11

1

1

111

11 2

22 x

TTTK

x

TTu

t

TT n

j

n

j

n

j

n

j

n

j

n

j

n

j

Time splitting (Leap frog und FTCS)

i.e. stable for 2

2

2

2

44

u

K

u

x

u

Kt

22

2

)()4(4 xuKK

xt

or

Stability (Von Neumann method) Tn+1=ATn xikj

k

kj etTtT )()( ) and (

(1)

i

xikxiknxikxiknnn

eAxkxkx

tKxkiA

xkx

tKxkAiA

eeTx

tKeeTTT

)(sin))cos(1(4

1)sin(

))cos(1(4

1)sin(2

22

22

2

2

2

1

2

11

x

tu

(+=physical)

1...1))cos(1(4

1 2

2/1

2

tKkxk

x

tKAwith (i.e. analytical +…)

2

22

22

2

61)(6

11

sin)cos(1(4

1

sinarctan

x

tKxktuk

xkxkx

tK

xk

(1)

dependent on K

1-d Linear Diffusion and 1-d Linear Transport Equation

Summary

a) Diffusion equation (heat equation)

• Spectral: like decay equation

• Grid point: FTCS

b) Transport equation

• Time spitting method

Frank Lunkeit

36

4. Nonlinear Advection and 1-d Nonlinear Transport Equation (Burgers Equation)

Introduction to Numerical Modeling

Frank Lunkeit

The Nonlinear Advection Equation (Inviscid Burgers Equation)

equation (one dimensional): 02

10

2

x

u

t

u

x

uu

t

u

dt

du

Solution: )(),( utxftxu with any function f

Like linear advection, but f depends on u itself (implicit equation)

Solvable (for practical use) in few special cases only.

A ‚formal‘ (geometrical) solution can be constructed by using the method of

characteristics

)sin()0,( xtxu Initial condition:

1

)sin(),(~),(k

s kxtkutxuSolution: kt

ktItku k

s

)(2),(~ with

Ik(kt) = first kind Bessel function

e.g. Platzmann 1964, Tellus:

Frank Lunkeit

37

The Method of Characteristics

0

x

uu

t

u

dt

du

00 )0,( xttxux

Lagrangian perspective: discussing the paths of individual parcels (points)

(paths = characteristics)

0dt

du=> velocity of individual parcel is constant in time

=> parcels are moving on a straight lines:

=> characteristics are straight lines with slope u(x0,t=0)

if u(x0,t=0) varies in space: characteristics cross at a certain time tc

=> b) after tc one parcel can have more than one location (unphysical!)

=> physical solutions only possible up to t=tc

from

=> a) discontinuities (shock waves) are formed

Frank Lunkeit

Frank Lunkeit After: Platzmann, G.W., 1964: An exact integral of complete spectral equations for unsteady

one-dimensional flow. Tellus, 16, 422-431.

Characteristics of Platzmanns Solution

Analytic solution characteristics

t=0

t=1

t=2

t=3

u

x

38

Frank Lunkeit

Non linear term after inserting sine-series:

1 2

21

1 2

21

2

2

1

1

]))sin[(]))(sin[(()(

)cos()sin()()(

)cos()()sin()(

21212

212

221

k k

kk

k k

kk

k

k

k

k

xkkxkktutuk

xkxktutuk

xktukxktux

uu

The non linear wave-wave interaction of the waves k1 and k2 forces waves with

wave number k1+k2 and k1-k2.

=> Energy/momentum is redistributed within the wave spectrum

0

x

uu

t

u

L

nk

2Example:

Sine-series (waves) with time dependent amplitudes

k

k kxtutxu )sin()(),(

The nonlinear term:

The Nonlinear Advection Equation

1 2 3 40j=

Problem: With a finite number of grid points (e.g. 0-M) waves with wave

numbers k > M/2 get erroneously interpreted (as M-k)

Example: M=4; k=3 => ‚false‘ wave with k‘=1

Grid Point Method: Aliasing

Frank Lunkeit

39

Frank Lunkeit

Aliasing: Consequence for Energy

20 cos)sin()0,( 00

x(kx) ku

x

ukxutxulet

=> kin. Energy:

2

0

2

022

00

2)(sin

2

udxkx

uE

Energy change:

2

0

2

0

2

0

2

2

1dx

x

uuudx

t

uudx

t

u

t

E

Example:

2

0

3

0

2

0

2

0

0)2sin()sin(2

)2sin(2

)cos()sin(with

dxkxkxku

t

E

kxuk

kxkxkux

uu

But With resolution M=3k

2

0

3

0

3

0sin

2)sin()sin(

2)sin()2sin(

kudxkxkx

ku

t

Ekxkx

gAlia

=> Energy increase (due to aliasing from limited resolution)

=> analytically the total energy is conserved

• At each time level short waves (k1+k2) may be forced which (potentially)

are not resolved and, therefore, erroneously interpreted.

• This leads to unrealistic increase of wave amplitudes (i.e. energy), in

particular in the short wave part of the spectrum, and finally to a ‘blow up’ of

the numerical solution.

• This mechanism is, in principal, independent of the time step length or the

grid size.

• Nonlinear instability

Nonlinear Instability

Frank Lunkeit

40

Solutions

• Artificial elimination of short waves

• Diffusive schemes (e.g. upstream)

• Explicit diffusion

• Appropriate discretization of non linear terms

Nonlinear Instability

Frank Lunkeit

Frank Lunkeit

Analytically:

i.e. total energy (~u2) is conserved

x

dxt

u

x

u

t

u

x

uu

t

uu

x

uu

t

u0

2

1

3

1

2

1 2322

If this would also be the case numerically => no non linear instability

Solution: Discretization of the non linear term

x

uuu

x

uu ii

i

i

2

111st try:

02

1

21

2

1

2112

j

jjjj

j

jj

j uuuuuu

udxt

uuudx

t

uu

t

E

02

12

2

31

2

31

2

23

2

23

2

12

2

1 uuuuuuuuuuuu

example: 3 Points, cyclic boundary conditions:

Not appropriate

Discretization of the Nonlinear Term

41

j

jjjjj

jjjjjjjjjjjjj

j

uuuuuxt

E

x

uuu

x

uuu

x

uuu

x

uuuu

x

uu

06

1

2

)(

2

)(

2

)(

3

1

6

2121

21211121212nd try:

But: Still transfere of energy into ‚wrong‘ waves (unphysical)

06

1123213312132231321 uuuuuuuuuuuuuuuuuu

example: 3 points, cyclic boundary

conditions

appropriate

j

jjjjjjj

jjjjjj

jjjjj

j

uuuuuuuxt

E

uuuuuuxx

uuuuu

x

uu

06

1

6

1

23

2

111

2

1

2

111

2

1

11113rd try:

appropriate

Discretization of the Nonlinear Term

Frank Lunkeit

x

uuuu

t

uu

x

uu

t

unnnnn

i

n

i iiii

6

2121

1

options

Two level Euler:

x

uuuu

t

uu

x

uu

t

unnnnn

i

n

i iiii

62

2121

11

Three level Leap frog:

Caution: a) slightly unstable due to t-discretization

b) linear instability may occur => mind the CFL criterion

Finite Differences

Frank Lunkeit

42

Frank Lunkeit

=> right hand side:

N

Nk

k

k k

kk

k

k

k

k

ikxF

xkkiuuik

xikuikxikux

uu

2

2

212

221

)exp(

))(exp(

)exp()exp(

1 2

21

2

2

1

1

0

x

uu

t

u

N

Nk

k ikxtutxu )exp()(),(

Ansatz: transformation of u into new basis functions which are differentiable

orthogonal functions of x, e.g. Fourier-series:

N

Nk

k ikxt

u

t

u)exp(=> left hand side:

Since contributions to

wavenumbers -2N to 2N are

obtained

with k=k1+k2 and

2

1

)(L

Ll

lklk uulkiF (interaction coefficients)

L1=max(-N,k-N); L2=min(N,k+N), i.e. L1=k-N, L2=N for k ≥ 0,

and L1=-N, L2=k+N for k < 0

Spectral Method

Frank Lunkeit

with

N

Nk

k

N

Nk

k ikxFikxt

u

x

uu

t

u 2

2

)exp()exp( with

2

1

)(L

Ll

lklk uulkiF

L1=max(-N,k-N); L2=min(N,k+N)

NkN

k

N

Nk

k

N

Nk

k ikxFikxFikxF2

2

2

)exp()exp()exp(

resolved

waves

unresolved

waves

Neglecting the unresolved waves leads to 2N coupled ordinary differential

equations (ODE‘s):

2

1

)(L

Ll

lklkk uulkiFt

u L1=max(-N,k-N); L2=min(N,k+N)

-N ≤ k ≤ N

Cut off: no aliasing but not conserving moments higher than u2

To be solved using common methods

Spectral Method

43

Frank Lunkeit

spectral method versus finite differences:

spectral: exact spatial derivatives but numerical effort goes with N2

finite differences: numerical effort goes with N but spatial derivatives not exact

Improvement by combination: The spectral transform method

Idea: compute derivatives (and linear terms) in spectral space and non linear term

on corresponding grid (≥ 3N+1 grid points to avoid aliasing). The effort goes with N

ln(N) (using a fast fourier transform (fft)).

Non linear advection:

Step 1: transform u into grid point domain (inverse Fourier transformation (via fft))

Step 2: compute u2 on grid points

Step 3: transform u2 into spectral space (via fft)

Step 4: compute the x-derivative of u2 in spectral space, and do the time stepping

Step 1: ….

02

10

2

x

u

t

u

x

uu

t

u

The Spectral Transform Method

Frank Lunkeit

The (Viscid) Burgers Equation: Advection and Diffusion

equation (one dimension): 2

2

x

uK

x

uu

t

u

Various applications to describe processes in science and technology in a ‚simple‘

way (e.g. road traffic) and important test bed for numerical schemes.

Numerical Solution: Spectral or finite differences with the known schemes.

In most cases by using time splitting (separating advection and diffusion)

(formal) analytic solution using Cole-Hopf transformation: x

zK

x

z

z

Ku

ln2

2

2

2

2

22

2

2

2

22

ln2

ln2

ln2

2

1

x

zK

t

z

x

z

xK

x

z

xK

t

z

xK

x

uK

x

u

t

u

dK

txG

dK

txG

t

x

u

)2

),;(exp(

)2

),;(exp(

=>

t

xdutxG

2

)()(),;(

2

0

0

Linear heat equation

44

Numerical Solution of Burgers Equation using different K

Frank Lunkeit

Nonlinear Advection and 1-d Nonlinear Transport Equation (Burgers Equation)

Summary

• Viscid and inviscid Burgers equation

• Aliasing

• Non linear instability

• Energy conserving discretization

• Spectral transform method

Frank Lunkeit

45

5. More Dimensions (Grids)

Introduction to Numerical Modeling

Frank Lunkeit

Problem: not only one dimension and variable but three (x,y,z) dimensions and

various (coupled) variables (scalars and vectors).

typically: Scalars (temperature, height, vorticity, divergence, etc.) and 3d flow (u,v,w)

Numerics:

Grid point models: discretization using staggered grids (e.g. scalars shifted

compared to vectors).

(Semi-) Spectral models: (non linear terms) and parameterizations on corresponding

(Gaussian) grids with staggering in the vertical.

Three Dimensions with Scalar and Vector Fields

Frank Lunkeit

46

Frank Lunkeit

u u

v

v

T

u u

v

v

T u u

v

v

T

u u

v

v

T u u

v

v

T

E = two shifted C-grids

Grids

Horizontal: ‚classical‘ grids according to Arakawa (T=scalar, (u,v)=flow)

w vertically staggered to all other

variables (u,v,T), horizontally at T

or u or v grid points

z

w

u,v,T

u,v,T

w

w

Grids

Vertical: staggered

Frank Lunkeit

47

Frank Lunkeit

Grids

Global grids

‚classical‘: lon-lat grid

New: Icosahedron

ui ui-1

v

v

Ti

Staggered grid: Discretization using appropriate averaging:

x

TTu

x

TTu

x

Tu ii

iii

i

i

111

2

1

z

wk+1

Tk

wk

Example: Advection (x-direction) on C-grid:

Vertical advection:

z

TTw

z

TTw

z

Tw kk

kkk

k

k

11

1

2

1

x

TTuu

x

Tu ii

ii

i

2)(

2

1 111or (better)

∆x

z

TTww

z

Tw kk

kk

k

2)(

2

1 111or

Grids: Discretizations

Frank Lunkeit

48

More Dimensions (Grids)

Summary

• Grids after Arakawa (A,B,C,D,E)

• Staggered grid

• Lon-lat- und icosahedral-grids

Frank Lunkeit

6. Design of an Atmospheric General Circulation Model (AGCM)

Introduction to Numerical Modeling

Frank Lunkeit

49

Frank Lunkeit

An Atmospheric General Circulation Model (AGCM) ECHAM

Variables:

prognostic (dynamic) variables

boundary conditions (partially

prognostic)

Processes:

Adiabatic: moist atmospheric fluid

dynamics

Diabatic: forcing (sources) and

dissipation (sinks)

Representation (equations):

Adiabatic: resolved scales; based

on fundamental laws

(approximated; e.g.

primitive eq.)

Diabatic: unresolved scales;

parametrerized, i.e.

linked to the prognostic

variables (resolved

scales)

Numerics

Representation and discretization:

Horizontal: spectral transform method (Legendre polynomials) or grid point (finite

diff.); semi-Lagrangian tracer transport (q)

Vertical: staggered grid (z-, p-, σ- and/or θ-system (mostly mixed: p (top) and σ

(ground))

Time: time splitting method; adiabatic: mostly leapfrog with Asselin filter; semi-

implicit (divergence eq.); diabatic: explicit or implicit (e.g. diffusion)

Resolution:

Horizontal: about 10-500km

Vertical: about 20-100 levels; 0-30/100km

Time: some minutes

An Atmospheric General Circulation Model (AGCM)

Frank Lunkeit

50

Numerics

Input: Initial fields (or restart files) and boundary conditions

Output: Prognostic variables, deduced parameters, history (restart files)

Work flow:

1 Initialization: read boundary conditions (z0, albedo, SST, ice, etc.)

Set initial conditions (e.g. normal mode initialization for NWP,

start date for climate) or read history (restart files)

2 Time stepping: a) update boundary conditions (e.g. radiation, SST)

b) compute adiabatic and diabatic tendencies

c) update prognostic variables

d) write output

a) …

3 Termination: write history (restart files) for continuation

An Atmospheric General Circulation Model (AGCM)

Frank Lunkeit

Design of an Atmospheric General Circulation Model (AGCM)

Summary

• Time splitting method (adiabatic/diabatic)

• Resolved and unresolved processes -> parameterizations

• Prognostic and diagnostic variables

• Boundary an initial conditions

Frank Lunkeit