Measurement and Units · Measurement and Units • SI – similar to (but not exactly the same as)...

Post on 16-Jul-2020

5 views 0 download

Transcript of Measurement and Units · Measurement and Units • SI – similar to (but not exactly the same as)...

MeasurementandUnits

• SI – similar to (but not exactly the same as) the metric system

Measurement and Units

• SI– similarto(butnotexactlythesameas)themetricsystem

PhysicalQuantity Nameofunit SymbolofUnitLength Meter mMass Kilogram kgTime Second sTemperature Kelvin KAmountofsubstance

Mole mol

Electriccurrent Ampere ALuminousintensity Candela cd

Prefix MultipleTera(T) 1012

Giga(G) 109

Mega(M) 106

Kilo(k) 103

Centi(c) 10-2

Milli(m) 10-3

Micro(uorµ) 10-6

Nano(n) 10-9

Pico(p) 10-12

Femto(f) 10-15

Moreonmeasurement

• Precision – how“close”experimentalvaluesaretoeachother(consistency)

• Accuracy – how“close”experimentalvaluesaretoa“true”or“accepted”value

• “closeness”canbemeasuredbyavarietyofstatisticaltechniques– mean,median,mode,standarddeviation,etc.

Significantfigures

• Weliveintherealworld,notintheory!• Aidinreportingexperimentallymeasuredquantities–Anyinstrumentusedformeasurementwillhaveaspecifiedprecision(+/-)

–Weareallowedtoreportall known digitsandone unknown digit

Significantfigures• Anynon-zerodigitissignificant(Ex.1234)• Zerossandwichedbetweendigitsaresignificant(Ex.1023)

• ZerostotheleftofadecimalareNOTsignificant(Ex.0.123)

• Zerostotheleftofthefirstnon-zerodigitareNOTsignificant(Ex.0.0000123)

• Zerostotherightofthelastnon-zerodigitaresignificant(Ex.0.123000)

• Ifthereisnodecimalpoint,zerosareNOTsignificant(Ex.100vs100.)

Calculationsinvolvingsignificantfigures

• “Achainisonlyasstrongasitsweakestlink”• AdditionandSubtraction– usethenumberwiththeleastnumberofsignificantfiguresAFTERthedecimal(orleastnumberifthereisnodecimal)

• MultiplicationandDivision– usethenumberwiththeleastnumberofTOTALsignificantfigures

• Propagationoferror– roundonlyatthelaststepofamulti-stepcalculation(butkeeptrackofhowmanysigfigsthereshouldbeateachpoint)

DimensionalAnalysisandUnitConversion

• Canbeusedasaproblem-solvingtool• Itisalwaysagoodideatoincludeunits,notjustnumbers!

• Ex.Howmanysecondsareinoneyear?

ChemicalReactions(Equations)

• Note:Inthiscoursethephasesforeachchemicalreactionareomitted

• Example–2C2H6(g)+7O2(g)à 4CO2(g)+6H2O(l)willbewrittenas

–2C2H6 +7O2à 4CO2 +6H2O

Neutralizations• Reactionofanacidwithabase

–Acid+Baseà Salt+Water• Overall/Completeformula/Molecularreaction:

–HCl(aq)+NaOH(aq)à NaCl(aq)+H2O(l)• However,weshouldreallyshowthisreactionasitwould“look”insolution

Neutralizations• Ionicequation:

–H+(aq)+Cl-(aq)+Na+(aq)+OH-(aq)à Na+(aq)+Cl-(aq)+H2O(l)

(wateronlydissociatesaboutevery1in107 molecules)• Netionicequation:

–H+(aq)+OH-(aq)à H2O(l)–Spectatorions– identityisirrelevant,howevertheyarenecessaryforchargeneutrality

Namingcompounds

• Usuallyputmetalfirst,thennonmetal(gofromlefttorightfromtheperiodictable)

• Exceptions– N,H,O• Name=firstelementsecondelement(-ide)• Prefixes– Ionicsubstancesgenerallyhavenoprefixes–Covalentsubstances– prefixesarealwaysusedforthe2nd element(evenifitonlyhasoneofthem)butareonlyusedforthe1st elementif>1

Number Prefix1 Mono2 Di3 Tri4 Tetra5 Penta6 Hexa7 Hepta8 Octa9 Nona10 Deca

IonicCompounds• Ions– atomsthathavegainedorlostelectrons(have+or– charge)–Canhaveverydifferentpropertiesthantheircorrespondingelements

• Cations- +charge(lostelectrons)–Usuallyoriginatefrommetals• Anions- - charge(gainedelectrons)–Usuallyoriginatefromnonmetals• Ionscanalsobepolyatomic (composedofmorethanoneatom)

Determiningthechargeforanion

• ForGroupsIA-VIIIAthe“usual”chargeofanionisbasedonitsposition

–+1,+2,+3,+/-4,-3,-2,-1,0• ForGroupB(transitionmetals),usetheStocksystem–Romannumeralsrepresentcharges

–Ex.Fe(II)ion=Fe2+

Oxyanions

• Containavaryingnumberofoxygenatomsaspartofapolyatomicion

Oxyanion NameClO- HypochloriteClO2

- ChloriteClO3

- ChlorateClO4

- Perchlorate

FormulaUnit

• Strictlyspeaking,thistermshouldbeusedtodescribeioniccompounds

• Itrepresentsthesmallestcollectionofionsthatcombinetoformsomethingneutral

• Ex.NaCl,Al2O3

• Innamingformulaunits,prefixesareNOTused.

Hydrates

• ChemicalsthatcontainH2Ointheirformula

• Thewatermoleculesareactuallyassociatedwiththecations/anionsinawell-definedway

• AprefixmustbeusedtoindicatethenumberofH2Omolecules

• Anhydrous(dry)– noH2Opresent

• Ex.CuSO4 vs.CuSO4.5H2O

What’sanatommadeoutof?

• Allatomsarecomprisedofsubatomicparticles,whicharefundamental.

• Allsubatomicparticlesarecreatedequal– Theyareexactlythesame,eveniftheyarepresentindifferentatoms

• Threeareimportantforchemistry– Proton– Neutron– Electron

J.J.Thomson(1897)

• Discoveryoftheelectron• (-)chargedparticleswereproduced,andtheybehavedexactlythesame,regardlessofthemetalthatwasused.

• Wasabletocalculatethem/zratio,-5.69X10-12 kg/C,butwasn’tabletogetindividualvaluesforthemassorcharge.

http://dbhs.wvusd.k12.ca.us/webdocs/AtomicStructure/Disc-of-Electron-Images.htmlhttp://www.makingthemodernworld.org.uk/icons_of_invention/science/1880-1939/IC.026/

RobertMillikan(1909)• Measuredthevelocityofafallingoildropletinthepresence/absenceofamagnetic

field• Determinedthechargeonanelectron(-1.602X10-19 C)– Massofelectron=9.11X10-31 kg

http://www.juliantrubin.com/bigten/millikanoildrop.html

ErnestRutherford(1911)

• a particle=• Mostparticlewentstraightthrough,butsomeweredeflected• Mostoftheatomisemptyspace,butallthe(+)chargeisconcentratedinthecenter(nucleus)

http://wps.prenhall.com/wps/media/objects/602/616516/Media_Assets/Chapter02/Text_Images/FG02_05.JPG

Somedefinitions

• Isotope– same#ofprotons,butdifferent#ofneutrons• AtomicNumber(Z)– #ofprotons• MassNumber(A,M)- #ofnucleons(protonsandneutrons)

• AtomicMass– weightedaverageofallmassnumbers(weightedbyfractionalabundance)

Theatomicmassunit(amu)

• Oneamu=1/12themassofoneatomofC-12(bydefinition)

• Thisisthebasicunitofmassforchemists,thoughitisn’tanSIunit

Example

• Calculatetheatomicweightofcarbon.

Solution

• Carbonexistsinthreeisotopicforms:12C,13Cand14C.• Therelativeabundancesoftheseisotopesareapproximately98.8%,1.1%and0.1%,respectively(thiscanbedeterminedbymassspectrometry)

• Thereforetheatomicweightwouldbe=12(0.988)+13(0.011)+14(.001)=12.011amu

Gaschromatography– Massspectrometry(GC-MS)

• Usuallyrequiresionization

• Formchargedspecieswithanunpairedelectron(radical)

• Fragmentationpattern– Basedonbrokenchemicalbonds

– Eachpiece(fragment)hasacharacteristicm/zratio

• Molecularjigsawpuzzle

Diagramofamassspectrometer

http://chemistry.umeche.maine.edu/CHY251/Ch13-Overhead4.html

GC-MSinstruments

http://www.cooper.edu/~newmark/CH251/gcms.html

Commonisotopicratios

• Ratioscantellyouwhichatomsyouhavepresent(bycomparingrelativeintensities)

Element Isotopes Abundance(%)

Hydrogen 1H,2H,3H 99.985,0.015,(0)

Carbon 12C,13C,14C 98.90,1.10,(0)

Nitrogen 14N,15N 99.63,0.37

Oxygen 16O,17O,18O 99.762,0.038,0.200

Chlorine 35Cl,37Cl 75.77,24.23

Bromine 79Br,81Br 50.69,49.31

Example:Boron

http://www.chemguide.co.uk/analysis/masspec/elements.html

Average atomic masses listed by IUPAC are based on a study of experimental results. Bromine has two isotopes 79Br and 81Br, whose masses (78.9183 and 80.9163 amu) and abundances (50.69% and 49.31%) were determined in earlier experiments. Calculate the average atomic mass of bromine based on these experiments.

NuclearStability

• Nucleicanbepredictedtobestableorunstable“radioactive”basedonthenumberofnucleons(protonsandneutrons).

• GenerallyifZ>84(Po)thenuclidewillundergoradioactivedecay.AllelementswhereZ>92are“artificial”inthesensethattheyarenotnaturallyoccurring.

• For“small”nuclei,stableconfigurationsareachievedwhen(A-Z)/Zis1.

• For“large”nuclei,(A-Z)/Zis>1(1.2-1.4)

• “Magicnumbers”existwherenucleiareexceptionallystable:2,8,20,28,50,82,126.

http://www.kentchemistry.com/links/Nuclear/BandStability.htm

RadioactiveDecay

• Inordertoachievestability,radioactivenucleiwilltypicallytry

tochangetheir(A-Z)/Zratiosotheycanfallinthebandof

stability.(a andb decays)• Itisalsopossibletobecomemorestableyetkeepthemassof

thenucleusthesame(g decay)• Otherpossibilitiesarefission (splittingofaheavynuclideintosmallernuclides)andfusion (joininglighternuclidesintoaheaviernuclide)

a decay

• Lossofaheliumnucleus

– Resultsinejectionofpositiveparticles• Typicallyoccurswithheaviernuclei

• Example

b decay

• Commonformedium-sizednuclides

• b- decay– lossofanelectron– Example

– Netconversionofaneutronintoaproton[(A-Z)/Ztoohigh]

• b+ decay(positronemission)– lossofanpositron– Example

– Apositronistheantiparticle ofanelectron• Electroncapture– gainofanelectron– Example

– Netconversionofaprotonintoaneutron[(A-Z)/Ztoolow]

g decay

• Lossofahighenergyphoton

• Nochangeinatomicormassnumber

– Example

• Wecanthinkofthenucleonsasbeingfoundinvariousenergy

levels,justlikeelectrons

Nuclearfission

• Artificialtransmutationprocessthatreleasesatremendous

amountofenergy

• Typicallyinitiatedbya“magicbullet”,commonlyaneutron:

• Noticethatforeveryoneneutronthatisused,threeneutrons

areproduced.Eachoftheseneutronscanthenbeusedfor

anotherfissionreaction,andsothereactionleadstoan

unstable(supercritical)situationsincethenumberofparticles

growsexponentially.Thisisknownasachainreaction.

Lightandspectroscopy

• EMSpectrumhaswavesofvaryingfrequenciesandwavelengths

• E=hν =hc/λ• Spectroscopydealswiththeinteractionofmatterwithlight

Atomiclinespectra• Acuvettefilledwithasampleisthenexposedtoabeamoflight.Sincelightofall

possiblewavelengthsareincident,itwasbelievedthatallpossiblewavelengthsshouldbeemitted,sothespectrumshouldbearainbow(continuousemission)

• However,somethingelsewasobserved…

• Balmer (1885) n=3,4,5…

http://www.faculty.virginia.edu/consciousness/new_page_6.htmhttp://www.astronomyknowhow.com/hydrogen-alpha.htm

Asimple,yetrevolutionaryidea

• Planckproposedthatenergyisquantized:

E=hnh=Planck’sconstant=6.626*10-34 J*s

“Old”QuantumMechanics

• Niels Bohr(1913)– Assumedthattheangularmomentum(nottheenergy!)oftheelectroninahydrogenatomisquantized

– Usedacombinationofclassicalphysicsandthisnewinterpretationforenergytoderive“orbits”,orenergylevels(verysimilartoaplanetarymodel)

– Thiswasbasedonwell-understoodfundamentalconstantsinphysics(andPlanck’sconstant)

Atheoreticalexplanationofatomiclinespectra

• Photonsoflightareemittedwhenelectronsgofromahighertolowerenergylevel(oppositeistrueforabsorption)

• Becausetheenergylevelsarefixed,onlycertainwavelengthsoflightwillbeobserved

Thegood,thebadandtheugly

• Thegood– Bohrwasabletocomeupwithatheoreticalmodelfortheenergylevelsinthehydrogenatomwhichaccountedfortheexperimentallyobservedlinespectra(Balmerseries)

• Thebad– Itonlyworkedforhydrogen!!!(andotherone-electronsystems)

• Theugly– Thenecessarymathematicsgetverydifficultveryquickly

– Multi-electronsystemsoftendon’thaveclosedformsolutions

Quantumnumbers

• Principalquantumnumber(n)– n=1,2,3…– SameasBohr’senergylevels

– Indicateswhat“shell”theelectronisin• Angularmomentumquantumnumber(l)– l≤n-1– Ex.l=0à sorbital,l=1à porbital,l=2à dorbital,l=3à forbital

– Determinestheshape oftheorbital,or“subshell”

Quantumnumbers

• Magneticquantumnumber(ml)– │ml│≤ l– Determinesthespatialorientation anddegeneracyoftheorbital– Ex.ifl=1(porbital)thenml =-1,0,1.Theseareusuallycalledpx,py,andpz (directionsdonotdirectlycorrespondtothesenumbers).Wecanalsoseewhytherearethreeporbitals,sincetherearethreeallowedvaluesforml.

Subshell (orbital)shapes

• Orbitals

• Nodesarepossible– regionsofzeroprobabilityoffindingtheelectron

http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookchem1.html

Quantumnumbers

• Spinquantumnumber(ms)– Unrelatedtotheotherthreequantumnumbers

– Unrelatedtospatialcoordinates– Eachelectronhasan“intrinsic”spincoordinate• Thereisnoclassicalanalog,butitbehavessimilartoangularmomentum

– ms =+/- ½(half-integer)

• “Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons”

• Itisimpossiblefortwoelectronsinthesameorbitaltohavethesamespin

• Notwoelectronscanhaveidenticalquantumnumbers(inthesameatom)

Consider the orbitals shown here in outline.

(a) What is the maximum number of electrons contained in an orbital of type (x)? Of type (y)? Of type (z)?

Consider the orbitals shown here in outline.

(b) How many orbitals of type (x) are found in a shell with n = 2? How many of type (y)? How many of type (z)?

Consider the orbitals shown here in outline.

(c) Write a set of quantum numbers for an electron in an orbital of type (x) in a shell with n = 4. Of an orbital of type (y) in a shell with n = 2. Of an orbital of type (z) in a shell with n = 3.

Consider the orbitals shown here in outline.

(d) What is the smallest possible n value for an orbital of type (x)? Of type (y)? Of type (z)?

Consider the orbitals shown here in outline.

(e) What are the possible l and ml values for an orbital of type (x)? Of type (y)? Of type (z)?

Theperiodictable

Main-groupelements(“theA-list”)

• Thevalence(outershell)consistsonlyofsandporbital

electrons

• Groupnumber=#ofelectronsinthevalenceshell(usingthe

olderRomannumeralsystem)

• Periodnumber=principalquantumnumber(n)

• sblock– alkalimetalsandalkaliearthmetals

• pblock– metals,metalloidsandnonmetals(including

halogensandnoblegases)

Transitionmetals(“theB-team”)

• Containdandforbitals

• dblock- transitionmetals

• fblock– rareearth(lanthanide/actinide)

• Theseareconsidered“innershell”electrons

• Thehighestenergyelectronsareactuallyinashellwitha

smallervalueofnthatthatoftheoutermostshell(valence

shell)

– dblock– (n-1)– fblock– (n-2)

PeriodicTrends

• Patternsthatemergeinchemicalandphysicalpropertieswhen

elementsarearrangedintheperiodictable

• Canusuallybeexplainedbythenumberofvalenceelectrons,

thenumberofcoreelectrons,andthenumberofprotons

(nuclearcharge)

AtomicRadius

• Generallyatomicradiusdecreasesacrossaperiodand

increasesdownagroup

– Thetrendonlyworksformaingroupelements

http://edtech2.boisestate.edu/kilnerr/502/jigsaw.html

AtomicRadius

• Group– increaseinthenumberofprincipalenergylevels

(greateraveragedistancethattheelectronisfromthe

nucleus)

• Period– increaseineffectivenuclearcharge(thenetcharge

thevalenceelectrons“feel”)

EffectiveNuclearCharge(Zeff)

• Zeff ismeanttoincorporatetheshieldingeffectofcore(inner)

electrons

– Valenceelectronscanpenetrateinnershells(ex3dand4s)– Coreelectronsarenotallequallyeffectiveinshieldingvalenceelectrons

– Valenceelectronscanshieldeachother,thoughtheeffectisweak• Transitionmetalsinthesameperiodhavealmostthesame

radiussinceZeff isthesame

IonicRadius

• Definedinasimilarfashiontoatomicradius(distancebetweentwoionsina

formulaunit)

• Metalstendtolosevalenceelectrons,sotheirhighestoccupiedprincipalenergy

leveldecreasebyone

– Ionicradiiformetalsaresmallerthanthoseofthecorrespondingatomicradii

• Nonmetalstendtogainvalenceelectrons,sotheirhighestoccupiedprincipal

energylevelremainsthesame,butthereisincreasedrepulsionamongthe

electronsinthatlevel

– Ionicradiifornonmetalsarelargerthanthoseofthecorrespondingatomicradii

Inpictures

http://chemwiki.ucdavis.edu/Wikitexts/UC_Davis/UCD_Chem_124A%3A_Kauzlarich/ChemWiki

_Module_Topics/Periodic_Trends_in_Ionic_Radii

IonizationEnergy

• Definedastheenergyrequiredtoremove anelectronfromthe

groundstate,inthegasphase

– A(g)à A+(g)+e-

• Thiscanberepeatedsuccessively(1st,2nd,3rd,etc.)

– Itgetsprogressivelyhardertoremoveelectronssincethespeciesisalready

charged

– Largejumpsoccurforagivenelementasyoubreakupanoctet(goingfrom

valenceelectronstocoreelectrons)

IonizationEnergy

• Generallydecreasesasyougodownagroup

– Outermostelectronsare(onaverage)furtherawayfromthenucleus,sothereis

agreatershieldingeffect

• Generallyincreasesasyougoacrossaperiod

– Elementshaveagreatertendencytogainelectrons(ratherthanlose)

• Minoreffectscanbedueto

– whatsubshelltheelectronisin(s>p>d>fbecauseofenergy)

– Pairedvs.unpairedelectrons(unpaired>pairedbecauseofrepulsions)

Inpictures

http://websites.pdesas.org/jvogus/2010/5/18/44324/page.aspx

ElectronAffinity

• Definedastheenergyrequiredtoadd anelectrontothegroundstate,inthegasphase

– A(g)+e-à A-(g)

• Thishasthesamegeneraltrendasionizationenergy,although

itislessclear-cut

– Complicationsduetorepulsionsbetweentheincomingelectronand

theatomicelectrons

Inpictures

http://www.angelo.edu/faculty/kboudrea/periodic/trends_electron_affinity.htm

Electronegativity

• “Tendency”ofanelementtogainelectrons

• Paulingscale:

– (i-j)=bond-dissociationenergybetweeniandj– Fisarbitrarilygiventhemaximumvalueof4.0

• Alsofollowsthesamegeneraltrendasionizationenergyand

electronaffinity

2.... AEEI -

=c

Inpictures

http://en.wikipedia.org/wiki/Electronegativity

ChemicalPropertiesofElements

• Flametest

– Basedoncharacteristicabsorbanceoflightenergy

– Wavelengthemittedwillberelatedtotheenergygapbetweenelectroniclevels

– Usedtoidentifyvariousmetals

http://wesleydowler.com/?p=242

http://alchemist.edublogs.org/2008/11/17/which-ion-causes-the-color/

Redoxreactions(anintroduction)

• Redoxreactionsinvolveasimultaneousreductionandoxidation.• Reduction– gainofelectrons

– oxidationnumberisdecreased

• Oxidation– lossofelectrons

– Oxidationnumberisincreased

• Disproportionation– redoxreactionwherethesamespeciesisboth

oxidizedandreduced.

– Ex.2H2O2 à 2H2O+O2

Agents

• Reducingagent– causesareduction

– Getsoxidized– Usuallymetal

• Oxidizingagent– causesanoxidation

– Getsreduced– Usuallynonmetal

Activityseries

• “Noble”metals(Cu,Ag,Hg,Au)

– can’tproduceH2

http://employees.csbsju.edu/hjakubowski/cla

sses/ch123/summer_chem/ch123OLSGMM04

05.htm

ChemicalPropertiesofElements

• Reduction

– Reducingagentshaveatendencytoloseelectrons– Thispropertycanbecorrelatedwithionizationenergy,electronegativityandelectronaffinity

• MetalscanreactwithsourcesofH+ (acids,orevenwaterif

theyareactiveenough)togenerateionsandhydrogengas

• Mg+2H+ àMg2+ +H2

• Ca+2H2Oà Ca2+ +2OH- +H2

ChemicalPropertiesofElements

• Oxidation

– Oxidizingagentshaveatendencytogainelectrons– Thispropertycanbecorrelatedwithionizationenergy,electronegativity,andelectronaffinity

• Cl2 +2I- à 2Cl- +I2 willoccursinceClatomshaveahigher

(morenegative)electronaffinitythanIatoms(-349kJ/molvs.-

295kJ/mol)

• I2 +Cl- à 2I- +Cl2 willNOToccur

List the following ions in order of increasing radius: Li+, Mg2+, Br–, Te2–.

Write the Lewis structure for SeCl3+.

Explain why the H2O molecule is bent, whereas the BeH2

molecule is linear.

Reactionsofalkalimetals

• Withhalogens(F2,Cl2,Br2,I2):– M+X2 àMX

• Withhydrogen:– M+H2 àMH

• With(excess)oxygen:– Li+O2 à Li2O(plussomeLi2O2)– Na+O2 à Na2O2 (plussomeNa2O)– M+O2 àMO2 (M=K,Rb,Cs)

• Withwater:– M+H2OàMOH+H2

Reactionsofalkalineearthmetals

• Withhalogens(F2,Cl2,Br2,I2):–M+X2 àMX2

• Withnitrogen:–M+N2 àM3N2

• Withoxygen:–M+O2 àMO

• Withwater:–Mg+H2O(g)àMgO +H2

–M+H2OàM(OH)2 +H2(M≠Mg)

PeriodicTrends

• Patternsthatemergeinchemicalandphysicalpropertieswhen

elementsarearrangedintheperiodictable

• Canusuallybeexplainedbythenumberofvalenceelectrons,

thenumberofcoreelectrons,andthenumberofprotons

(nuclearcharge)

AtomicRadius

• Generallyatomicradiusdecreasesacrossaperiodand

increasesdownagroup

– Thetrendonlyworksformaingroupelements

http://edtech2.boisestate.edu/kilnerr/502/jigsaw.html

IonizationEnergy

• Generallydecreasesasyougodownagroup

– Outermostelectronsare(onaverage)furtherawayfromthenucleus,sothereis

agreatershieldingeffect

• Generallyincreasesasyougoacrossaperiod

– Elementshaveagreatertendencytogainelectrons(ratherthanlose)

• Minoreffectscanbedueto

– whatsubshelltheelectronisin(s>p>d>fbecauseofenergy)

– Pairedvs.unpairedelectrons(unpaired>pairedbecauseofrepulsions)

Overview- PeriodicTrendsinGroup13

• Bisanonmetal/metalloid– formscovalentbondsbutdisplays

electricalpropertiesofsemiconductors(diagonalrelationship

withSi)

• Alisametal/metalloid–formscovalentbondsbutcanalsolose

valenceelectronstoformions(Al3+)

• Ga – formsGa3+ionstoachievestableconfiguration([Ar]3d10)

• InandTl tendtoform+1ionsbecausetheylosethevalencep

electronbutNOTthevalenceselectrons(inertpair)

Diagonalrelationships

• Oftenthe1st memberofagrouphas

propertiesthataredifferentfrom

theothermembersofthegroup,

butaresimilartothoseofthe2nd

memberoftheadjacentgroup

– Relativelyhighchargedensity

• Example:Li

• Li2CO3,LiF,LiOH andLi3PO4 are

muchlesssolublethanthe

correspondingsaltsoftheother

alkalimetals

– Li2CO3 andLiOH formLi2O

• Li+N2 à Li3N(otheralkalimetals

don’treact)

• Li+O2 à Li2O(otheralkalimetals

formperoxidesorsuperoxides)