Low-Temperature Corrosion in Biomass Combustionusers.abo.fi › maengblo › CET_2020 › 5...

Post on 07-Jul-2020

0 views 0 download

Transcript of Low-Temperature Corrosion in Biomass Combustionusers.abo.fi › maengblo › CET_2020 › 5...

Low-Temperature Corrosion in

Biomass Combustion

Emil Vainio

Chemistry in Energy Technology, 10.03.2020

Total energy consumption by

source in Finland

stat.fi

Oil; 25 %

Coal; 9 %

Natural gas; 5 %

Peat; 4 %Nuclear energy;

18 %

Hydro power; 4 %

Wind power; 1 %

Biomass; 28 %

Others; 5 %

Oil; 25 %

Coal; 9 %

Natural gas; 5 %

Peat; 4 %Nuclear energy;

18 %

Hydro power; 4 %

Wind power; 1 %

Biomass; 28 %

Others; 5 % Biomass based fuels most

important renewable

source

0

1

2

3

4

5

6

7

8

9

10

Wei

ght

% (

db

)

Rest

P

S

Cl

Na

K

Ca

Si

Biomass Combustion• Large scale combustion of biomass

increases

• Circulating fluidized beds (CFB)

• Bubbling fluidized beds (BFB)

• Low grade biomasses of high interest

• Poor fuel quality gives challenges to design

and operation

Courtesy of Foster Wheeler and ValmetÅbo Akademi Databank 2016

Low-temperature corrosion

Superheaters

Ash

Pre-heatersC

orro

sio

n Corrosion

and

plugging

• Interest of recovering

maximum heat without

corrosion

• By lowering flue gas temperature 10°C increases

the boiler efficiency by 0.5%

• Corrosion of pre-heaters and

the flue gas channel

• Cause of corrosion and

operational problems

not clear

• Acid dew point vs

hygroscopic deposits

Fuel

Flemming et al.

Low-temperature corrosion

Part 1. Dew point corrosion

Sulfuric acid

Hydrogen chloride

Water dew point and sulfurous acid

Part 2. Hygroscopic deposits

Chlorides

Phosphates

Carbonates

H2S

SO2

SO3

Fuel

Air

SO2

Low-temperature corrosion

– Acid dew point

H2SO4

?

A part of the SO2 that is formed in combustion of sulfur containing fuels is further oxidized to SO3

The final SO3 formation is dependent on many factors, such as:

Sulfur content in the fuel

Temperature

Ash composition (SO3 is a reactive gas and is partly captured in the ash)

Additives

Catalysts (e.g. the use of SCR)

A rule of thumb from fossil fuel combustion is that a few % of SO2 forms SO3

Homogeneous SO2 to SO3 conversion

2SO2(g) + O2(g) ↔ 2SO3(g)

Example

Inlet gas with1000 ppmv SO2

3 and 5 vol% O2

Residence time: ~5s

Modified from Fleig et al.

Combustion and Flame 160 (2013)

Homogeneous SO2 to SO3 conversion

Catalytic conversion SO2 to SO3

Using selective

catalytic NOx

reduction will lead to

catalytic conversion of

SO2 to SO3

Some ash compounds

may also lead to

catalytic formation of

SO3, e.g. iron oxide

and vanadium

Marier and Dibbs, Thermochimica Acta 8(1-2)

2NH3 + 2NO + 0.5O2 ↔

2N2 + 3H2O

Unwanted reactions:

SO2 + 0.5O2 ↔ SO3

NH3 +SO3 + H2O ↔

NH4HSO4

SCRUrea

injection

Flue

gas

Equilibrium between SO3 and H2SO4

0

10

20

30

40

50

60

70

80

90

100

150 200 250 300 350 400 450 500 550 600

Co

nv

ersi

on

(%

)

Temperature ( C)

Series1

Series2

SO3

H2SO4

SO3(g) + H2O(g) → H2SO4(g)

SO3 start to form gaseous H2SO4

below 550°C and at 200°C all SO3

converted to H2SO4(g)

Sulfuric acid dew point

0

20

40

60

80

100

120

140

160

180

10 15 20 25 30

De

w p

oin

t (°C

)

Water vapor in gas (vol%)

Sulfuric acid dew

point above 100°C

Water dew point normally 50-70°C

Tdew point sulfuric acid dew point [K]

pH2O partial pressure of water vapor [mmHg]

pH2SO4(g) or SO3 partial pressures [mmHg]

Verhoff and Banchero:

Tdew point = 1000/{2.276 - 0.0294 × ln(pH2O) - 0.0858 × ln(pH2SO4) + 0.0062 × ln(pH2O) × ln(pH2SO4)},

Effect of material temperature on

sulfuric acid corrosion

Acid dew point

Water dew point

If water condenses SO2 will absorb

in the water forming sulfurous acid

H2O + SO2 -> H2SO3

Maximum corrosion rate caused by sulfuric

acid is usually 20-30°C below the dew

point temperature

Rela

tive C

orr

osio

nR

ate

Temperature (ºC)

HCl dew point

40

45

50

55

60

65

70

75

80

10 15 20 25 30

Tem

per

atu

re (°

C)

H2O (vol%)

H2O100ppm HCl500ppm HCl1000 ppm HCl

Tdew point HCl dew point [°C]

pH2O partial pressure of H2O [mmHg]

pHCl partial pressure of HCl [mmHg]

1 atm = 760 mmHg

Kiang, Cemical Engineering 1981

Dew point corrosion

Dew point corrosion can be prevented by

Keeping material temperatures above the dew

point

Adjusting excess oxygen and peak

temperature

Using additives, e.g. limestone, that binds

SO2 and SO3

Co-combustion

SO3

SO3 capturing potential

of biomass ash

+ash

and

vapors

SO3 is very reactive

Biomass contains

alkaline ash

Can be captured in the

furnace by alkali

vapors (e.g. KCl, KOH)

and ash CaCO3, CaO,

KCl, NaCl, K2CO3,

Na2CO3

K2SO4, Na2SO4,

CaSO4

Measurement techniques to asses

low-temperature corrosion

1. SO3/H2SO4 measurements to determine

dew point

Controlled condensation method

ÅA KCl salt method

2. Air-cooled corrosion probes

3. Electrochemical measurement techniques

4. Dew point meter

1. SO3/H2SO4(g) measurement techniques:

Controlled condensation method

Flue gas cooled between acid

and water dew point

temperature

→ Sulfuric acid condenses

Coil and filter rinsed

Solution analyzed for sulfate

ions with ion chromatography

Not practical to use in the

field

Cooling coil

1. SO3/H2SO4(g) measurement techniques:

ÅA KCl salt method

Selective sulfation of KCl by SO3 or H2SO4 can be utilized in

measurements. 2KCl(s) + H2SO4(g) -> K2SO4(s) + 2HCl(g)

Sulfuric acid is captured in the salt and forms sulfate

SO2 does not react with the salt

Salt is dissolved in water and analyzed for sulfate ions with IC →

H2SO4(g) concentration can be calculated

Vainio et al. Energy & Fuels 2013

•A fresh carbon steel ring is placed in the probe tip

•Short-term exposure: 2h

•After the exposure corrosion products are washed off

•Annual tube wall thickness loss (mm/year) is

calculated form weight loss, which is a rough

estimation

2. Corrosion probe measurements

Hole for

thermocouple

4. Dew point meter

Electrodes in the probe tip

Probe tip temperature slowly decreased

When condensate is formed on the sensor a current reading can be observed

Not sensitive, detection limit ~5 ppm SO3

Case studies

1. Homogeneous SO3/H2SO4(g) formation in air-

and oxy-combustion

2. Low-temperature corrosion in fluidized bed

combustion of biomass

3. Bark and NCG in a grate fired boiler

Chalmers Oxy-combustion test unit

Test casesAir-fired

Oxyfuel 30

• Fuel: propane doped with SO2

• Fuel input 60kWth

• Two cases:

• Air-fired case• SO2 in flue gas: 1000 ppm (on dry basis)

• λ=1.38

• Oxy-fuel case• Dry flue gas recirculation

• SO2 in flue gas: 3000 ppm (on dry basis)

• 30 vol% O2 in oxidizer

• λ=1.25

Results: air-fired case

300

350

400

450

500

550

600

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9

Ave

rage

fu

rnac

e w

all t

em

pe

ratu

re (

°C)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

Air case

Controlled cond.

Temperature (°C)

4136 38

34

300

350

400

450

500

550

600

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9

Ave

rage

fu

rnac

e w

all t

em

pe

ratu

re (

°C)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

Air case

Controlled cond.

Temperature (°C)

4136 38

3428

34

41

300

350

400

450

500

550

600

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9

Ave

rage

fu

rnac

e w

all t

em

pe

ratu

re (

°C)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

Air case

Controlled cond.

Salt met. (KCl)

Temperature (°C)

4136 38

3428

34

41

25

3335

300

350

400

450

500

550

600

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

1 2 3 4 5 6 7 8 9

Ave

rage

fu

rnac

e w

all t

em

pe

ratu

re (

°C)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

Air case

Controlled cond.

Salt met. (KCl)

Salt met. (NaCl)

Temperature (°C)

SO3/SOX conversion: 2.4-3.4%

Dew point: 148-152°C (calculated)

Vainio et al. Energy & Fuels 2013

300

350

400

450

500

550

600

0

10

20

30

40

50

60

70

80

90

100

110

120

130

3 4 5 6 7 8 9 10 11 12 13 14

Ave

rage

fu

rnac

e w

all t

em

pe

ratu

re (

°C)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

OF30

Temperature (°C)

36 39

54

96

300

350

400

450

500

550

600

0

10

20

30

40

50

60

70

80

90

100

110

120

130

3 4 5 6 7 8 9 10 11 12 13 14

Ave

rage

fu

rnac

e w

all t

emp

erat

ure

(°C

)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

OF30

Salt met. (NaCl)

Temperature (°C)

36 39

54

9692

65 66

74

300

350

400

450

500

550

600

0

10

20

30

40

50

60

70

80

90

100

110

120

130

3 4 5 6 7 8 9 10 11 12 13 14

Ave

rage

fu

rnac

e w

all t

emp

erat

ure

(°C

)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

OF30

Salt met. (NaCl)

Salt met. (KCl)

Temperature (°C)

36 39

54

9692

65 66

74

127

300

350

400

450

500

550

600

0

10

20

30

40

50

60

70

80

90

100

110

120

130

3 4 5 6 7 8 9 10 11 12 13 14

Ave

rage

fu

rnac

e w

all t

emp

erat

ure

(°C

)

SO3

(pp

mv

in w

et

gas)

Time from start-up (h)

OF30

Salt met. (NaCl)

Salt met. (KCl)

Salt met. (K2CO3)

Temperature (°C)

Interference from SO2

SO3/SOX conversion: 1.2-3.1%

Dew point: 157-167°C (calculated)

Results: oxy-combustion case

Vainio et al. Energy & Fuels 2013

2. BFB combustion of biomass

107 MWth, 118 bar, 535 °C

Forest residue, sludge, recycled fuels

Measurements at LUVO area

SO3/H2SO4 measurements

Corrosion probe

Deposit analysis

Objective

Understand the cause of low-temperature

corrosion in biomass combustion

Dew point corrosion (sulfuric acid)

Hygroscopic deposits

Role of ash-forming elements on corrosion

and impact on boiler operation

~40 m

~8 m

Measurement

location

Valmet Technologies OY

Measurement campaign: BFB boiler

Furnace

H2SO4(g)

Biomass, sludge and demolition wood

Limestone addition on and off

H2SO4(g)

and SO2

40-200 ppmv SO2

<0.1 ppmv H2SO4(g)

40 ppmv HCl

<0.1 ppmv H2SO4(g)

Corrosion

probe

Low-temperature corrosion in BFB

combustion of biomass

No sulfuric acid detected

Deposits enriched in Ca and Cl, indicating CaCl2

Corrosion when water vapor high ~20 vol%

Corrosion caused by deliquescence

13

14

15

16

17

18

19

20

21

22

23

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ammonia slip,

limestone off

Limestone off Limestone on

Wa

ter

va

po

r in

flu

e g

as

(vo

l%)

Co

rro

sio

n r

ate

(m

m/y

ear)

Corrosion rate

Water vapor

<0.05

0.00

0.04

0.08

0.12

0.16

0.20

0.24

Al Ca Cl Fe K Na S

Mo

le fra

cti

on

Spot 1 Spot 2 Spot 3 Spot 4 Spot 5

CaCl2

Deposit analysis Corrosion rate at 100°C

Vainio et al Fuel 184 (2016)

H2S

SO2

SO3

Fuel

Air

SO2

Low-temperature corrosion in BFB combustion of biomass

Low conversion to SO3 due to low furnace temperature and air-staging

SO3 very reactive towards alkaline ash

CaCl2

K2SO4, CaSO4...

Hygroscopic and

deliquescent

salts may cause

low-temperature

corrosion

CaO(s) + 2HCl(g) → CaCl2(s) + H2O(g)

CaCO3(s) + 2HCl(g) → CaCl2(s) + H2O(g) + CO2(g)

Vainio et al Fuel 184 (2016)

Measurement

location

Grate fired combustor burning

bark and NCG

SO2 1200 ppmv

H2SO4 <0.1 ppmv

NCG = non-condensable

gases from pulping

Windward side of the carbon steel ring

after washing

No corrosion at 99°C

Ca, Cl, K, S, Fe in deposit

Flue gas temperature during

measurements 180-195°C

More energy could be recovered

Ring temperature

99°C

Ring temperature

86°C

Ring temperature

71°C

0.02

0.3

1.4

0

0.5

1

1.5

2

99 86 71

Ring temperature (°C)

Co

rro

sio

n r

ate

(m

m/y

ear

)

<

Pure water dew point 57 C

Summary part 1:

SO3 and dew point corrosion• A few % of the SO2 may form SO3 in combustion

• Depends on

• Sulfur content in the fuel

• Temperature

• Ash composition

• Additives

• Catalysts (e.g. the use of SCR or catalytic compounds in the ash)

• The presence of sulfuric acid in flue gases may cause severe low

temperature corrosion, dew point depends on H2SO4(g) and H2O

concentrations

• Generally, no acid dew point corrosion in biomass combustion

• Acid dew point corrosion is more a problem in fossil fuel combustion

• In fluidized bed combustion of biomass no H2SO4 due to relatively

low furnace temperature leading to low SO3 formation, heavy air-

staging (no available oxygen in freeboard) and alkaline fly ash

capturing any SO3 formed

Part 2. Hygroscopic and

deliquescent salts

Hygroscopic deposits

Many salts that form in combustion are hygroscopic

If water is absorbed by deposits on steel tubes →

corrosive environment

Examples: CaCl2, NH4Cl, K2CO3

Many factors impact the cold-end deposit

composition

Fuel ash

Additives

Gas composition0

1

2

3

4

5

6

7

8

9

10

Wei

ght

% (

db

)

Rest

P

S

Cl

Na

K

Ca

Si

Åbo Akademi Databank 2016

Deposit chemistry – formation of

hygroscopic salts in FBC

CaseLimestone

feedLoad

1 Limestone off Full

2 Limestone off Low (~55%)

3 Limestone on Full

Fuel: bituminous

coal with high S

and Cl

Case 1 - limestone off, full load

SO2 in the flue gas 900 ppmv

No chlorine in deposit

Vainio et al. 23rd FBC conference

0

5

10

15

20

25

30

Al Ca Fe K Mg N Na Si Cl S

Mo

l %

T = 70°C, Wind

T = 70°C, Side

T = 99°C, Wind

T = 99°C, Side

Case 2 – limestone off, 55% load

NH3(g) + HCl(g) → NH4Cl(s)

Vainio et al. 23rd FBC conference

Thermodynamic stability of NH4Cl

0

2

4

6

8

10

12

14

16

Al Ca Fe K Mg N Na Si Cl S

Ato

m %

T = 50°C, Wind

T = 70°C, Wind

T = 70°C, Side

T = 70°C, Lee

T = 99°C, Wind

T = 99°C, Side

T = 99°C, Lee

Case 3 – limestone on, full load

Formation of CaCl2Vainio et al. 23rd FBC conference

Stability of CaCl2

CaO(s) + 2HCl(g) ↔ CaCl2(s) + H2O(g) (1)

Ca(OH)2(s) + 2HCl(g) ↔ CaCl2(s) + 2H2O(g) (2)

CaCO3(s) + 2HCl(g) ↔ CaCl2(s) + H2O(g) + CO2(g) (3)

Vainio et al. Energy et Fuel 2019

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70

Tem

pe

ratu

re (

°C)

Time (min)

Deliquescence of CaCl2at 25 vol% H2O

Deliquescence: process by which a salt absorbs

enough water from the flue gas to fully dissolve

Hygroscopic and deliquescent salts/deposits

Corrosion of

heat exchangers

Plugging

and

corrosion

Deposit

build-up

Corrosion

during down

time

Process by which a salt absorbs enough water from the flue gas to

fully dissolve

DRH = deliquescence relative humidity, relative humidity at which a

salt takes on water to fully dissolve

For a mixture the DRH is usually lower than for the individual salts

CRH = crystallization relative humidity

DRH ≠ CRH

Deliquescence

DRH CRH

KH2PO4 96.6

Na2CO3 87

KCl 85 62

Na2SO4 84

(NH4)2SO4 80

NH4Cl 77

NaCl 75 47

K2CO3 43

NH4HSO4 40

CaCl2·6H2O 31

DRH at 25°C for some salts

Albayrak et al., Colloid and Interface Science 2014

Deliquescence temperature = temperature at

which deliquescence occurs at a certain

vol% H2O

Deliquescence and recrystallization

Example:

Measurement of DRH

and CRH of NaCl

aerosol particles

DRH = 75%

CRH = 47%

Pinterich T., Atmos measurement

Technique. 2017

DRH

CRH

RH and DRH

0

10

20

30

40

50

60

70

80

90

100

35 45 55 65 75 85 95

Re

lati

ve h

um

idit

y (%

)

Temperature (°C)

6 vol% H2O

8 vol% H2O

10 vol% H2O

Above the blue line in the figure

CaCl2 will absorb moisture and

may cause corrosion

Above the red line in the figure

NaCl will absorb moisture and

may cause corrosion

RH = pH2O/p*H2O

pH2O = partial pressure of water vapor

p*H2O = equilibrium vapor pressure of water

DRH for NaCl

DRH for CaCl2

Li et al. Atmospheric

Environment 82 (2014)

Mutual Deliquescence Relative

Humidity (MDRH) for NaCl+KCl

Mixtures of salts can be more

hygrscopic than the individual salts

Study of hygroscopic properties of

salts at ÅA

Hygroscopic properties of salts and deposits

Deliquescence temperature

Recrystallization

Corrosivity of deliquescent salts

Deliquescence and recrystallization properties of

Chlorides: CaCl2, NH4Cl, PbCl2, ZnCl2, KCl, NaCl..

Phosphates: K3PO4, KH2PO4…

Carbonates: K2CO3, CaCO3

Sulfates: (NH4)2SO4, NH4HSO4, K2SO4, CaSO4..

Methods

Hygroscopic properties

Visual analysis

Thermogravimetric analysis

Electrochemical methods,

chronoamperometry

Corrosion studies

TGA of CaCl2 at 25 vol% H2O

50

75

100

125

150

175

200

225

250

-0.50

0.51

1.52

2.53

3.54

4.55

5.56

6.5

0 2 4 6 8 10 12 14 16

Tem

pae

ratu

re (

°C)

Mo

lar

rati

on

of

H2O

/CaC

l 2

Time (h)

Series2

Temperature (°C)H2O/CaCl2

Temperature

120°C

140°C

160°C

At 160°C back to

anhydrous CaCl2

Deliquescence

109°C

150°C

130°C

1CaCl2·3H2O

90°C

CaCl2 → 1CaCl2·3H2O → CaCl2·2H2O → CaCl2(aq)

Vainio et al. Energy et Fuel 2019

Conductivity of salt/deposit,

Chronamperometry

N2

H2O

Salt

T1

T3

H2O

Vent

Gases

(dry)

Condenser

Unit

Tube Furnace

Heated line

Potentio

-stat

T4

Steam

Generator

T2

T5

Vainio E., Hupa E., Engbolm M., Lehmusto J., Lindberg D. 23rd FBC conference: A Novel Method to Detect

Hydrate formation and Deliquescence of Salts and Deposits Related to Low-Temperature Corrosion in FBC

Deliquescence and recrystallization

5-35 vol% H2O, rest nitrogen

Heating and cooling rate: 0.4°C/min

80

90

100

110

120

130

140

150

160

170

0 1 2 3 4 5 6 7 8

Tem

per

atu

re (°

C)

Time (h)

Relative humidity and temperature

0

10

20

30

40

50

60

70

80

90

100

80

90

100

110

120

130

140

150

160

170

0 1 2 3 4 5 6 7 8

Rel

ativ

e h

um

idit

y (%

)

Te

mp

era

ture

(°C

)

Time (h)

Temperature

Relative humidity

25 vol% H2O

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

80

90

100

110

120

130

140

150

160

170

180

0 0.5 1 1.5 2 2.5

Cu

rre

nt

(µA

)

Te

mp

era

ture

(°C

)

Time (h)

Chronoamperometry

CaCl2 at 35 vol% H2O

Deliquescence

at 119°C

Hydrate

formation

at 150°C

Hysteresis of CaCl2 – 25 vol% H2O

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

60

70

80

90

100

110

120

130

140

150

160

0 5 10 15 20 25 30 35

Time (h)

Cu

rren

t (µ

A)

Tem

per

atu

re (

°C)

Temperature (°C)

Current (µA)

118°C

130°C

140°C

150°C

Corrosive

Deliquscence

Deliquescence and drying of CaCl2summary

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

5 10 15 20 25 30 35

Tem

per

atu

re (°

C)

Water vapor (vol%)

X Deliquescence of CaCl2 measured with CA

Recrystallization of CaCl2 measured with CA

Deliquescence of CaCl2 measured with TGA

Water dew point

Vainio et al. Energy et Fuel 2019

Deliquescence temperature = 29.10·ln(pH2O) + 150.0

Crystallization temperature = 22.39·ln(pH2O) + 179.1

40

50

60

70

80

90

100

110

120

130

140

150

160

10 15 20 25 30 35

Tem

pe

ratu

re (°

C)

Water vapor (vol%)

Example. Material temperature 110°C and fluctuating H2O

due to sootblowing (15→35 vol% H2O)

DeliquescenceSalt will not

recrystallize

Vainio et al. Energy et Fuel 2019

2. Corrosion tests

100 mg of CaCl2 placed

on carbon steel coupons

Various H2O

concentrations:

Temperature

100-160°C

Exposure time: 4h

Corrosion rate (mm/year)

determined from weight

loss

Vainio et al.

IFQ 2016

0

0.2

0.4

0.6

0.8

1

1.2

80 90 100 110 120 130 140 150 160

0.48

<0.02 <0.02

1.18

<0.02 <0.02 <0.02

1.02

0.36

<0.02 <0.02 <0.02

0.47

Co

rro

sio

n ra

te (m

m/y

ear)

Temperature (°C)

10 vol% H2O 25 vol% H2O 50 vol% H2O 0.5h 50% H2O + 3.5h 25% H2O10 vol% H2O 25 vol% H2O 50 vol% H2O0.5h 50 vol% H2O + 3.5h 25 vol% H2O

1025

5050&25

100°C 110°C 120°C 130°C

After

exposure

25vol%

H2O

Corrosion tests

Summary part 2:

Hygroscopic and deliquescent deposits

Ash composition, additives, boiler load has an effect on the ash

composition in the cold-end of boilers

Small changes in the combustion process may have a significant effect on

deposit composition

Deposits contain hygroscopic and deliquescent salts. Examples of highly

deliquescent salts are: CaCl2, K2CO3, ZnCl2

Deliquescence is the process by which a salt absorbs enough water from

the gas to fully dissolve. This leads to a highly corrosive environment

Deliquescent deposit in biomass conversion the main cause of low-

temperature corrosion

May also lead to filter plugging, deposit build-up and down-time corrosion

Knowledge on ash chemistry and hygroscopic properties of salts leads to

more efficient and reliable power production