Light generation and control in SOI Photonic...

Post on 18-Jun-2020

1 views 0 download

Transcript of Light generation and control in SOI Photonic...

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.1/32

Thomas F Krauss

University of St. Andrews, School of Physics and Astronomy, St. Andrews, UK

Light generation and control in SOI Photonic crystals

Liam O'Faolain, Abdul Shakoor, Karl Welna

Christelle Monat, Bill Corcoran, Ben Eggleton, CUDOS

Matteo Galli, Dario Gerace, Simone Portalupi, Lucio Claudio Andreani, Pavia

Francesco Priolo, Giorgia Franzo, Catania

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.2/32

How grey silicon can help you generate new colours

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.3/32

1. SOI Photonic crystals

220 nm Si waveguide, airbridge or oxide clad

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.4/32

Mechanism!

a!

In the slow light regime, one can imagine the mode taking a longer route - that’s why it takes more time, and why there is more light inside the structure. !

Cavities can be understood as waveguides with their ends plugged up.!

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.5/32

Nonlinear wavelength conversion

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.6/32

Third harmonic generation

!

I" =P"A#ngneff C. Monat et al., Nature Photonics, April 2009

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.7/32

Signal/Noise Monitoring - Concept

B. Corcoran et al., “Optical signal processing on a silicon chip at 640Gb/s using slow-light”, Optics Express 18, 7770 (2010)

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.8/32

Bandwidth

640 Gbit/s -> 500fs pulses

B. Corcoran et al., “Optical signal processing on a silicon chip at 640Gb/s using slow-light”, Optics Express 18, 7770 (2010)

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.9/32

2. New colours from cavities

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.10/32

High Q (low loss) comes from lack of radiation within escape cone/ light cone.

High Q cavity

Real space

Fourier space

S. Noda et al., Nature 425, p.944 (2003)

Light cone

Q!45 k

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.11/32

High Q (low loss) comes from lack of radiation within the light cone.

But where does the cavity emission actually go ?

k 0

Farfield

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.12/32

Solution: Secondary grating

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.13/32

Solution: Secondary grating

S. L. Portalupi et al., Optics Express July 2010

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.14/32

!/a!

"

k-!/a!

2!/a!

2!/2a!

a 2a !/a!

Solution: Secondary grating

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.15/32

S. L. Portalupi et al., Optics Express July 2010

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.16/32

M Galli et al. Optics Express, December 2010

Nonlinear effects (here: Second and third harmonic generation) observed due to high intensity buildup and far-field engineering

Harmonic Generation

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.17/32

Ex Nearfield

Model Farfield Experiment Farfield

SHG –surface effect

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.18/32

Ey Nearfield

Model Farfield Experiment Farfield

THG – bulk effect

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.19/32

THG and SHG in Si cavities

M Galli et al. Optics Express, December 2010

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.20/32

Output power

M Galli et al. Optics Express, December 2010

Output power is “absolutely useless for photonics” (Referee NPhot)

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.21/32

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.22/32

! 100 "W

THG emission vs. Nanolaser

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.23/32

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.24/32

3. Silicon (linear) light emission ?

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.25/32

Nature Materials 2005

Bandedge “A-Centre”

“A-type trapping centres….attributed to silicon vacancies” (10K)

“A-Centre”

Defect emission from “A” Centres

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.26/32

“Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities” R. Lo Savio et al., accepted for publication in Appl. Phys. Lett.

Defect emission from Hydrogen implants

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.27/32

Nature News & Views, 1997

!

fP =3"3

4# 2QV

!rad =" nonrad

" rad +" nonrad

E. M. Purcell, Phys. Rev. 69, 37 (1946).

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.28/32

!rad =" nonrad

" rad +" nonrad

The Purcell-factor makes defect emission “Room-temperatureable”

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.29/32

Bulk defects (SOITEC process)

Surface defects (Plasma process)

Further improvements ?

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.30/32

!

!

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.31/32

!

1 pW 3000 x SOI

!"µ"Microphotonics S

t. A

ndre

ws

TF Krauss, WavePro No.32/32

Conclusion