Lesson 25: Evaluating Definite Integrals (Section 10 version)

Post on 04-Jul-2015

1.595 views 0 download

description

Computing integrals with Riemann sums is like computing derivatives with limits. The calculus of integrals turns out to come from antidifferentiation. This startling fact is the Second Fundamental Theorem of Calculus!

Transcript of Lesson 25: Evaluating Definite Integrals (Section 10 version)

. . . . . .

Section5.3EvaluatingDefiniteIntegrals

V63.0121, CalculusI

April20, 2009

Announcements

I FinalExamisFriday, May8, 2:00–3:50pmI Finaliscumulative; topicswillberepresentedroughlyaccordingtotimespentonthem

..Imagecredit: docman

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

. . . . . .

Thedefiniteintegralasalimit

DefinitionIf f isafunctiondefinedon [a,b], the definiteintegralof f from ato b isthenumber∫ b

af(x)dx = lim

n→∞

n∑i=1

f(ci)∆x

where ∆x =b− an

, andforeach i, xi = a + i∆x, and ci isapoint

in [xi−1, xi].

. . . . . .

Notation/Terminology

∫ b

af(x)dx

I∫

— integralsign (swoopy S)

I f(x) — integrandI a and b — limitsofintegration (a isthe lowerlimit and bthe upperlimit)

I dx —??? (aparenthesis? aninfinitesimal? avariable?)I Theprocessofcomputinganintegraliscalled integration

. . . . . .

Propertiesoftheintegral

Theorem(AdditivePropertiesoftheIntegral)Let f and g beintegrablefunctionson [a,b] and c aconstant.Then

1.∫ b

ac dx = c(b− a)

2.∫ b

a[f(x) + g(x)] dx =

∫ b

af(x)dx +

∫ b

ag(x)dx.

3.∫ b

acf(x)dx = c

∫ b

af(x)dx.

4.∫ b

a[f(x) − g(x)] dx =

∫ b

af(x)dx−

∫ b

ag(x)dx.

. . . . . .

MorePropertiesoftheIntegral

Conventions: ∫ a

bf(x)dx = −

∫ b

af(x)dx∫ a

af(x)dx = 0

Thisallowsustohave

5.∫ c

af(x)dx =

∫ b

af(x)dx +

∫ c

bf(x)dx forall a, b, and c.

. . . . . .

ComparisonPropertiesoftheIntegral

TheoremLet f and g beintegrablefunctionson [a,b].

6. If f(x) ≥ 0 forall x in [a,b], then∫ b

af(x)dx ≥ 0

7. If f(x) ≥ g(x) forall x in [a,b], then∫ b

af(x)dx ≥

∫ b

ag(x)dx

8. If m ≤ f(x) ≤ M forall x in [a,b], then

m(b− a) ≤∫ b

af(x)dx ≤ M(b− a)

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

. . . . . .

Socraticproof

I Thedefiniteintegralofvelocitymeasuresdisplacement(netdistance)

I Thederivativeofdisplacementisvelocity

I Sowecancomputedisplacementwiththeantiderivativeofvelocity?

. . . . . .

TheoremoftheDay

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

NoteInSection5.3., thistheoremiscalled“TheEvaluationTheorem”.Nobodyelseintheworldcallsitthat.

. . . . . .

TheoremoftheDay

Theorem(TheSecondFundamentalTheoremofCalculus)Suppose f isintegrableon [a,b] and f = F′ foranotherfunction F,then ∫ b

af(x)dx = F(b) − F(a).

NoteInSection5.3., thistheoremiscalled“TheEvaluationTheorem”.Nobodyelseintheworldcallsitthat.

. . . . . .

Proving2FTC

Divideup [a,b] into n piecesofequalwidth ∆x =b− an

as

usual. Foreach i, F iscontinuouson [xi−1, xi] anddifferentiableon (xi−1, xi). Sothereisapoint ci in (xi−1, xi) with

F(xi) − F(xi−1)

xi − xi−1= F′(ci) = f(ci)

Orf(ci)∆x = F(xi) − F(xi−1)

. . . . . .

Wehaveforeach i

f(ci)∆x = F(xi) − F(xi−1)

FormtheRiemannSum:

Sn =n∑

i=1

f(ci)∆x =n∑

i=1

(F(xi) − F(xi−1))

= (F(x1) − F(x0)) + (F(x2) − F(x1)) + (F(x3) − F(x2)) + · · ·· · · + (F(xn−1) − F(xn−1)) + (F(xn) − F(xn−1))

= F(xn) − F(x0) = F(b) − F(a)

. . . . . .

Wehaveshownforeach n,

Sn = F(b) − F(a)

sointhelimit∫ b

af(x)dx = lim

n→∞Sn = lim

n→∞(F(b) − F(a)) = F(b) − F(a)

. . . . . .

ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.

Solution

A =

∫ 1

0x3 dx =

x4

4

∣∣∣∣10

=14

.

Hereweusethenotation F(x)|ba or [F(x)]ba tomean F(b) − F(a).

. . . . . .

ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.

Solution

A =

∫ 1

0x3 dx =

x4

4

∣∣∣∣10

=14 .

Hereweusethenotation F(x)|ba or [F(x)]ba tomean F(b) − F(a).

. . . . . .

ExampleFindtheareabetween y = x3 andthe x-axis, between x = 0 andx = 1.

Solution

A =

∫ 1

0x3 dx =

x4

4

∣∣∣∣10

=14 .

Hereweusethenotation F(x)|ba or [F(x)]ba tomean F(b) − F(a).

. . . . . .

ExampleFindtheareaenclosedbytheparabola y = x2 and y = 1.

.

Solution

A = 2−∫ 1

−1x2 dx = 2−

[x3

3

]1−1

= 2−[13−

(−−1

3

)]=

43

. . . . . .

ExampleFindtheareaenclosedbytheparabola y = x2 and y = 1.

.

Solution

A = 2−∫ 1

−1x2 dx = 2−

[x3

3

]1−1

= 2−[13−

(−−1

3

)]=

43

. . . . . .

ExampleFindtheareaenclosedbytheparabola y = x2 and y = 1.

.

Solution

A = 2−∫ 1

−1x2 dx = 2−

[x3

3

]1−1

= 2−[13−

(−−1

3

)]=

43

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf v(t) representsthevelocityofaparticlemovingrectilinearly,then ∫ t1

t0v(t)dt = s(t1) − s(t0).

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf MC(x) representsthemarginalcostofmaking x unitsofaproduct, then

C(x) = C(0) +

∫ x

0MC(q)dq.

. . . . . .

TheIntegralasTotalChange

Anotherwaytostatethistheoremis:∫ b

aF′(x)dx = F(b) − F(a),

or theintegralofaderivativealonganintervalisthetotalchangebetweenthesidesofthatinterval. Thishasmanyramifications:

TheoremIf ρ(x) representsthedensityofathinrodatadistanceof x fromitsend, thenthemassoftherodupto x is

m(x) =

∫ x

0ρ(s)ds.

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

. . . . . .

A newnotationforantiderivatives

Toemphasizetherelationshipbetweenantidifferentiationandintegration, weusethe indefiniteintegral notation∫

f(x)dx

foranyfunctionwhosederivativeis f(x).

Thus∫x2 dx = 1

3x3 + C.

. . . . . .

A newnotationforantiderivatives

Toemphasizetherelationshipbetweenantidifferentiationandintegration, weusethe indefiniteintegral notation∫

f(x)dx

foranyfunctionwhosederivativeis f(x). Thus∫x2 dx = 1

3x3 + C.

. . . . . .

Myfirsttableofintegrals∫[f(x) + g(x)] dx =

∫f(x)dx +

∫g(x)dx∫

xn dx =xn+1

n + 1+ C (n ̸= −1)∫

ex dx = ex + C∫sin x dx = − cos x + C∫cos x dx = sin x + C∫sec2 x dx = tan x + C∫

sec x tan x dx = sec x + C∫1

1 + x2dx = arctan x + C

∫cf(x)dx = c

∫f(x)dx∫

1xdx = ln |x| + C∫

ax dx =ax

ln a+ C∫

csc2 x dx = − cot x + C∫csc x cot x dx = − csc x + C∫

1√1− x2

dx = arcsin x + C

. . . . . .

Outline

Lasttime: TheDefiniteIntegral

EvaluatingDefiniteIntegralsExamples

TotalChange

IndefiniteIntegralsMyfirsttableofintegrals

Examples“NegativeArea”

. . . . . .

ExampleFindtheareabetweenthegraphof y = (x− 1)(x− 2), the x-axis,andtheverticallines x = 0 and x = 3.

Solution

Consider∫ 3

0(x− 1)(x− 2)dx. Noticetheintegrandispositiveon

[0, 1) and (2, 3], andnegativeon (1, 2). Ifwewanttheareaoftheregion, wehavetodo

A =

∫ 1

0(x− 1)(x− 2)dx−

∫ 2

1(x− 1)(x− 2)dx +

∫ 3

2(x− 1)(x− 2)dx

=[13x

3 − 32x

2 + 2x]10 −

[13x

3 − 32x

2 + 2x]21 +

[13x

3 − 32x

2 + 2x]32

=56−

(−16

)+

56

=116

.

. . . . . .

ExampleFindtheareabetweenthegraphof y = (x− 1)(x− 2), the x-axis,andtheverticallines x = 0 and x = 3.

Solution

Consider∫ 3

0(x− 1)(x− 2)dx. Noticetheintegrandispositiveon

[0, 1) and (2, 3], andnegativeon (1, 2). Ifwewanttheareaoftheregion, wehavetodo

A =

∫ 1

0(x− 1)(x− 2)dx−

∫ 2

1(x− 1)(x− 2)dx +

∫ 3

2(x− 1)(x− 2)dx

=[13x

3 − 32x

2 + 2x]10 −

[13x

3 − 32x

2 + 2x]21 +

[13x

3 − 32x

2 + 2x]32

=56−

(−16

)+

56

=116

.

. . . . . .

Graphfrompreviousexample

. .x

.y

..1

..2

..3

. . . . . .

Summary

I integralscanbecomputedwithantidifferentiationI integralofinstantaneousrateofchangeistotalnetchangeI ThesecondFunamentalTheoremofCalculusrequirestheMeanValueTheorem