Lecture 8: Rolling Constraints II

Post on 22-Feb-2016

48 views 0 download

Tags:

description

Lecture 8: Rolling Constraints II. Generalizations and review. Nonhorizontal surfaces. Coin rolling on a slope. Small sphere rolling on a larger sphere’s surface. Hoop rolling inside a hoop. What can we say in general?. vector from the inertial origin to the center of mass. - PowerPoint PPT Presentation

Transcript of Lecture 8: Rolling Constraints II

1

Lecture 8: Rolling Constraints II

Coin rolling on a slope

Hoop rolling inside a hoop

Generalizations and review

Nonhorizontal surfaces

Small sphere rolling on a larger sphere’s surface

2

What can we say in general?

ω = ˙ θ cosφ + ˙ ψ sinθ sinφ( )i + ˙ θ sinφ − ˙ ψ sinθ cosφ( )j+ ˙ φ + ˙ ψ cosθ( )k

L =12

IXX˙ θ cosψ + ˙ φ sinθ sinψ( )

2+ IYY − ˙ θ sinψ + ˙ φ sinθ cosψ( )

2+ IZZ

˙ ψ + ˙ φ cosθ( )2

( )

+12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mg⋅R

v =ω × r

vector from the inertial origin to the center of mass

vector from the contact point to the center of mass

3

We can restrict our attention to axisymmetric wheelsand we can choose K to be parallel to the axle

without loss of generality

L =12

A ˙ θ cosψ + ˙ φ sinθ sinψ( )2

+ B − ˙ θ sinψ + ˙ φ sinθ cosψ( )2

+ C ˙ ψ + ˙ φ cosθ( )2

( )

+12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mg⋅R

L =12

A ˙ θ 2 + ˙ φ 2 sin2 θ( ) + C ˙ ψ + ˙ φ cosθ( )2

( ) +12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mg⋅R

mgz

4

If we don’t put in any simple holonomic constraint (which we often can do)

q =

xyzφθψ

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

5

We know v and ω in terms of qany difficulty will arise from r

This will depend on the surface

flat, horizontal surface — we’ve been doing this

flat surface — we can do this today

general surface: z = f(x, y) — this can be done for a rolling sphere

v =ω × r

r = −aJ2

Actually, it’s something of a question as to where the difficulties will arise in general

6

ddt

∂L∂˙ x i ⎛ ⎝ ⎜

⎞ ⎠ ⎟+ mgx = λ jC1

j

ddt

∂L∂ ˙ φ i ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC4

j

ddt

∂L∂ ˙ θ ⎛ ⎝ ⎜

⎞ ⎠ ⎟−

∂L∂θ

= λ jC5j

ddt

∂L∂ ˙ ψ ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC6

j

ddt

∂L∂˙ y i ⎛ ⎝ ⎜

⎞ ⎠ ⎟+ mgy = λ jC2

j

ddt

∂L∂˙ z i ⎛ ⎝ ⎜

⎞ ⎠ ⎟+ mgz = λ jC3

j

7

We have the usual Euler-Lagrange equations

ddt

∂L∂˙ q i ⎛ ⎝ ⎜

⎞ ⎠ ⎟−

∂L∂qi = λ jCi

j

and we can write out the six equations

8

The key to the problem lies in the constraint matrix

The analysis is pretty simple for flat surfaces, whether horizontal or tilted

Let’s play with the tilted surface

Choose a Cartesian inertial system such that i and j lie in the tilted planeand choose i to to be horizontal, so that j points down hill

(This is a rotation of the usual system about i)

9

y = cosα ′ y + sinαz'z = cosα ′ z − sinα ′ y

10

so the potential energy in the primed coordinates is

V = mg cosα ′ z − sinα ′ y ( )

the kinetic energy is unchanged

We can go forward from here exactly as beforeeverything is the same except for gravity

11

This has the same body system as beforebut the angle q can vary

(it’s equal to -0.65π here)

r remains equal to –aJ2

but we need the whole ω

12

??Let’s look at a rolling coin on a tilted surface in Mathematica

13

Curved surfaces

Spherical surface: spherical ball on a sphere

Two-d surface: wheel inside a wheel

General surface

14

Spherical ball on a sphere

R

a

x 2 + y 2 + z2 = R + a( )2

holonomic constraint

15

L = 12

A ˙ θ 2 + ˙ φ 2 + ˙ ψ 2 + 2 ˙ φ ˙ ψ cosθ( ) + 12

m ˙ x 2 + ˙ y 2 + ˙ z 2( ) − mgz

The Lagrangian simplifies because of the spherical symmetry

We have a constraint, which we can parameterize

x 2 + y 2 + z2 = R + a( )2

x = R + a( )sinξ cosχ , y = R + a( )sinξ sin χ , z = R + a( )cosξ

16

which transforms the Lagrangian

L = 12

A ˙ θ 2 + ˙ φ 2 + ˙ ψ 2 + 2 ˙ φ ˙ ψ cosθ( )

+ 12

m R + a( ) 2 ˙ ξ 2 + ˙ χ 2 1− cos 2ξ( )( )( ) − m R + a( )gcos ξ( )

We can now assign generalized coordinates

q =

φθψξχ

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

⎪ ⎪ ⎪

17

We have rolling constraintsω is unchanged, and r is as shown on the figure

and we recalculate v

ω = ˙ θ cosφ + ˙ ψ sinθ sinφ( )i + ˙ θ sinφ − ˙ ψ sinθ cosφ( )j+ ˙ φ + ˙ ψ cosθ( )k

rC =asinξ cosχasinξ sin χ

acosξ

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

v = a + R( )

˙ ξ cosξ cosχ − ˙ χ sinξ sinχ˙ ξ cosξ sinχ + ˙ χ cosξ sin χ

− ˙ ξ sinξ

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

18

The rolling constraint appears to have three componentsbut the normal component has already been satisfied

v −ω × r = 0

k × r( ) ⋅ v −ω × r( ) = 0

k × k × r( )( ) ⋅ v −ω × r( ) = 0

The normal is parallel to r, so I need two tangential vectors

19

We have the usual Euler-Lagrange equations

ddt

∂L∂˙ q i ⎛ ⎝ ⎜

⎞ ⎠ ⎟−

∂L∂qi = λ jCi

j

and we can write out the five equations

20

ddt

∂L∂ ˙ φ ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC1

j

ddt

∂L∂ ˙ ξ ⎛ ⎝ ⎜

⎞ ⎠ ⎟− ∂L

∂ξ= λ jC4

j

ddt

∂L∂ ˙ χ ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC5

j

ddt

∂L∂ ˙ θ ⎛ ⎝ ⎜

⎞ ⎠ ⎟− ∂L

∂θ= λ jC2

j

ddt

∂L∂ ˙ ψ ⎛ ⎝ ⎜

⎞ ⎠ ⎟= λ jC3

j

21

The constraint matrix is

a2 sin2 χ − 12

a2 sin2χ cos φ −ξ( ) a2 sin χ sinθ cos χ −θ( )sin φ −ξ( ) 0 R + a( )sinχ

0 − 12

a2 sin2χ sin φ −ξ( )12

a2 sin2χ sinθ cos φ −ξ( ) − 12

a R + a( )sin2χ 0

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

The last two Euler Lagrange equations are suitable for eliminating the Lagrange multipliers

22

After some algebra

λ1 = m R + aasinχ

2cosχ ˙ χ ˙ ξ + sin χ ˙ ̇ χ ( )

λ 2 = m R + aa

˙ ξ 2 − m R + aacosχ sinχ

˙ ̇ χ + mgacosχ

I have three remaining Euler-Lagrange equationsand two constraint equations that I need to differentiate

to give me five equations for the generalized coordinates

We need to go to Mathematica to see how this goes.

QUESTIONS FIRST??

23

Wheel within a wheel

Treat them both as hoopsradii r1 > r2

c

y2 = r1 − r2( )sinχ

z2 = r1 − r1 − r2( )cosχ

24

We have holonomic constraints

Put us in two dimensions

x1 = 0 = x2

φ1 = π2

= φ2

θ1 = − π2

= θ2

realize that z1 = r1

25

We have an interesting connectivity constraint —define the position of the small wheel in terms of the angle c

y2 = y1 + r1 − r2( )sinχ , z2 = r1 + r1 − r2( )cosχ

Putting all this in gives us a Lagrangian

L = 12

m1 + m2( ) ˙ y 12 + 1

2m1r1

2 ˙ ψ 1 + 12

m2r22 ˙ ψ 2 + 1

2m2 r1 − r2( )

2 ˙ χ 2 + 12

m2 r1 − r2( )2 cosχ ˙ χ ̇ y 1

+ gm2 r1 − r2( )cosχ − gr1 m1 + m2( )

26

We define a vector of generalized coordinates

q =

y1

ψ1

ψ 2

χ

⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎬ ⎪ ⎪

⎭ ⎪ ⎪

27

There will be two nonholonomic constraints

˙ y 1 = r1 ˙ ψ 1, r1 − r2( ) ˙ χ = r2˙ ψ 2

The corresponding constraint matrix is

C =1 r1 0 00 0 −r2 r1 − r2

⎧ ⎨ ⎩

⎫ ⎬ ⎭

28

The second and third Euler-Lagrange equations are fairly simpleso I will use those to find the two Lagrange multipliers

λ1 = −m1r1˙ ̇ ψ 1, λ 2 = −m2r2˙ ̇ ψ 2

To solve the problem we use the first and fourth Euler-Lagrange equationsand the differentiated constraints

The solution is numerical and we need to go to Mathematica to look at it.

QUESTIONS FIRST??

29

That’s All Folks