Lecture 6 - Silvio Savarese · Lecture 6 Stereo Systems Multi-view geometry •Epipolar Plane...

Post on 31-May-2020

6 views 1 download

Transcript of Lecture 6 - Silvio Savarese · Lecture 6 Stereo Systems Multi-view geometry •Epipolar Plane...

Lecture 6 -Silvio Savarese 5-Feb-14

Professor Silvio Savarese

Computational Vision and Geometry Lab

Lecture 6Stereo SystemsMulti-view geometry

Lecture 5 -Silvio Savarese 5-Feb-14

• Stereo systems• Rectification• Correspondence problem

• Multi-view geometry• The SFM problem• Affine SFM

Reading: [AZ] Chapter: 4 “Estimation – 2D perspective transformationsChapter: 9 “Epipolar Geometry and the Fundamental Matrix Transformation”Chapter: 11 “Computation of the Fundamental Matrix F”

[FP] Chapters: 10 “The geometry of multiple views”

Lecture 6Stereo SystemsMulti-view geometry

• Epipolar Plane • Epipoles e1, e2

• Epipolar Lines

• Baseline

Epipolar geometry

O1O2

x2

X

x1

e1 e2

= intersections of baseline with image planes

= projections of the other camera center

For details see CS131A

Lecture 9

OO’

pp’

P

Epipolar Constraint

0pEpT

E = Essential Matrix(Longuet-Higgins, 1981)

RTE

OO’

pp’

P

Epipolar Constraint

0pFpT

F = Fundamental Matrix(Faugeras and Luong, 1992)

1

KRTKFT

O1O2

X

e2

x1 x2

e2

Example: Parallel image planes

K K

x

y

z

• Epipolar lines are horizontal

• Epipoles go to infinity

• y-coordinates are equal

1

1

1 y

x

x

1

2

2 y

x

x

Rectification: making two images “parallel”

H

Courtesy figure S. Lazebnik

For details on how to rectify two views see CS131A Lecture 9

Why are parallel images useful?

• Makes the correspondence problem easier• Makes triangulation easy• Enables schemes for image interpolation

Application: view morphingS. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Morphing without using geometry

Rectification

x

x

x

y

y

y

î1

î0

îS

I0

I1

Is

P

C1

Cs

C0

From its reflection!

Why are parallel images useful?

• Makes the correspondence problem easier• Makes triangulation easy• Enables schemes for image interpolation

Point triangulation

O O’

P

e2

p p’e2

K Kx

y

z

u

v

u

v

f

u u’

Baseline B

z

O O’

P

f

z

fBuu

'

Note: Disparity is inversely proportional to depth

Computing depth

= disparity

Disparity maps

http://vision.middlebury.edu/stereo/

Stereo pair

Disparity map / depth map Disparity map with occlusions

u u’

z

fBuu

'

Why are parallel images useful?

• Makes the correspondence problem easier• Makes triangulation easy• Enables schemes for image interpolation

Correspondence problem

p’

P

p

O1O2

Given a point in 3d, discover corresponding observations

in left and right images [also called binocular fusion problem]

Correspondence problem

p’

P

p

O1O2

Given a point in 3d, discover corresponding observations

in left and right images [also called binocular fusion problem]

•A Cooperative Model (Marr and Poggio, 1976)

•Correlation Methods (1970--)

•Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

Correspondence problem

[FP] Chapters: 11

Correlation Methods (1970--)

210

p p’

195 150 210

Correlation Methods (1970--)

• Pick up a window around p(u,v)

p

Correlation Methods (1970--)

• Pick up a window around p(u,v)

• Build vector w

• Slide the window along v line in image 2 and compute w’

• Keep sliding until w∙w’ is maximized.

Correlation Methods (1970--)

Normalized Correlation; minimize:)ww)(ww(

)ww)(ww(

Left Right

scanline

Correlation methods

Norm. corrCredit slide S. Lazebnik

– Smaller window

- More detail

- More noise

– Larger window

- Smoother disparity maps

- Less prone to noise

Window size = 3 Window size = 20

Correlation methods

Credit slide S. Lazebnik

Issues

•Fore shortening effect

•Occlusions

OO’

O O’

O O’

Issues

• Small error in

measurements

implies large error

in estimating

depth

• It is desirable

to have small

B/z ratio!

•Homogeneous regions

Issues

Hard to match pixels in these regions

•Repetitive patterns

Issues

Correspondence problem is difficult!

- Occlusions

- Fore shortening

- Baseline trade-off

- Homogeneous regions

- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

Results with window search

Data

Ground truth

Credit slide S. Lazebnik

Window-based matching

Lecture 5 -Silvio Savarese 5-Feb-14

• Stereo systems• Rectification• Correspondence problem

• Multi-view geometry• The SFM problem• Affine SFM

Lecture 6Stereo SystemsMulti-view geometry

Courtesy of Oxford Visual Geometry Group

Structure from motion problem

Structure from motion problem

x1j

x2j

xmj

Xj

M1

M2

Mm

Given m images of n fixed 3D points

•xij = Mi Xj , i = 1, … , m, j = 1, … , n

From the mxn correspondences xij, estimate:

•m projection matrices Mi

•n 3D points Xj

x1j

x2j

xmj

Xj

motion

structure

M1

M2

Mm

Structure from motion problem

Affine structure from motion(simpler problem)

ImageWorld

Image

From the mxn correspondences xij, estimate:

•m projection matrices Mi (affine cameras)

•n 3D points Xj

Finite cameras

p

q

r

R

Q

P

O

XTRKx

M

??10

0100

0010

0001

TR

Question:

Finite cameras

p

q

r

R

Q

P

O

XTRKx

10

TR

0100

0010

0001

KM 3x3

Canonical perspective projection matrix

Affine homography

(in 3D)

Affine

Homography

(in 2D)

100

y0

xs

K oy

ox

p

q

r

R

Q

O

P

Affine cameras

100

yα0

xsα

oy

ox

K

10

TR

1000

0010

0001

KM

Canonical affine projection matrix

(points at infinity are mapped as points at infinity)

R’

Q’

P’

What’s the main difference???

Transformation in 2D

Affinities:

1

y

x

H

1

y

x

10

tA

1

'y

'x

a

Affine cameras

XTRKx

100

00

00

y

x

K

10

TR

1000

0010

0001

KM

10

bA

1000

]affine44[

1000

0010

0001

]affine33[ 2232221

1131211

baaa

baaa

M

12

1

232221

131211 XbAXx EucM

b

b

Z

Y

X

aaa

aaa

y

x

[Homogeneous]

[non-homogeneous

image coordinates] bAMMEuc

;1

PEucM

Pp

p’

;1

PbAPp M

v

u bAM

Affine cameras

M = camera matrix

To recap: from now on we define M as the camera matrix for the affine case

The Affine Structure-from-Motion Problem

Given m images of n fixed points Pj (=Xi) we can write

Problem: estimate the m 24 matrices Mi and

the n positions Pj from the mn correspondences pij .

2m n equations in 8m+3n unknowns

Two approaches:- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method

How many equations and how many unknown?

N of cameras N of points

A factorization method –Tomasi & Kanade algorithm

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization

method. IJCV, 9(2):137-154, November 1992.

• Centering the data

• Factorization

Next lecture

Multiple view geometry