Laser spectroscopy experiments on fission products

Post on 01-Jan-2016

19 views 3 download

description

Laser spectroscopy experiments on fission products. Introduction : hyperfine interaction. Principle : use the electronic cloud to probe the nuclear electromagnetic properties. - PowerPoint PPT Presentation

Transcript of Laser spectroscopy experiments on fission products

1

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Laser spectroscopy experiments on fission products

Principle : use the electronic cloud to probe the nuclear electromagnetic properties

Measured quantities : spin I, magnetic moment I, spectroscopic

quadrupole moment Qs, evolution of the mean square charge radius <r2>c

Introduction : hyperfine interaction

Physics case (part of)

Physics of medium mass nuclei produced by fission

Laser spectroscopy systems

Resonant Ionisation spectroscopy (RIS) : COMPLIS

Collinear Spectroscopy after beam cooling : future laser system at ALTO

2

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Hyperfine interaction

=300 nm

106 GHz

h4eV

6

0

10E h

IJ

H 0 NIA

B )0(JJ e QS

2Q0

Axial symmetry

JIF

191Ir

5

Two hyperfine interaction energy termsMeasurement

Nuclear quantities3)1)(2I(I

)1I(IK3

2

Nuclear structureinformation

QS

3K2-

A B

4

3

2 1

4GHz

3

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

AA'AA'Vol F

• Change of the nuclear charge density between isotopes :

VOLUME SHIFT

AA'iVol

AA'iM i

AA’

2cr

2 21

2

AA'

• Change of nuclear mass between isotopes:

AA'

A'-AMM iSiN

AA'iM

MASS SHIFT

Measurement Nuclear quantity

Nuclear droplet model

Isotope shift

4

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Ni Z=28

N=50

neutron rich nuclei produced by fission at ALTO (Orsay) and then at SPIRAL2 (GANIL)

Fission

Nuclear regions explored at ALTO

N=82

Sn Z=50

Doubly magic regions 78Ni and 132Sn

e-

238U

target source

30 keV

1+

50 MeV

Expected intensities = SPIRAL2 /100

5

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Production /s/µA

Stable

104 – 105

105 – 5 105

5 105 – 106

106 – 5 106

5 106 – 107

107 – 5 107

5 107 – 108

108 – 5 108

5 108 – 5 109

Expected yields at ALTO

Extrapolations from measured yields at PARRNe

Represented yields 104pps

minimum yield for the laser set-up we envisage

Z=28

Z=50

N=50

N=82

Kr

RbSr

CdIn

Sn

XeCsBa

6

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Z=56 Ba

N=82

Z=54

Xe

mid-shell effect

A “sample” of the physics motivations

The evolution of the charge distribution is very sensitive to the structural changes

<r2>c

N=60N=50

=0.4

=0.3

=0.2

=0.1

=0

Rb (Z=37) C. Thibault Nucl. Phys. A367, 1 (1981)

Sr (Z=38) F. Buchinger Phys. Rev. C 41, 2883 (1990)

Sherical shell gap

<r2>c when N

<r2>c very rapidly when N

Shape transition

The <r2>c variations reflect both the change in volume and departures from spherical symmetry, the origins of which can be :

-rigid deformation (rotor behaviour)

-Zero point quadrupolar vibrations (or more generally dynamical effects)

-Core polarization

7

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Origin : monopole part of the neutron-proton interaction importance of the radial part of the orbital wave functions

Illustration of the core polarization effect

n=2 n=3 n=4

N<50

N>50

2d5/2

1g9/2

2p1/2

2p3/2

1f5/2

50

2d5/2

1g9/2

2p1/2

2p3/2

1f5/2

50

40

38

40

38

8

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Illustration of the “dynamical” effects

Recent results from

the COMPLIS measurements

on tin

F. Le Blanc et al. to be published in Phys Lett B

Theoretical Data

NL3 : G.A Lalazissis et al., At. Data and Nucl. Data Tables 71 (1999)1.Gogny : M. Girod and S. Péru, Private comm. (2001)SLy4 and SLy7 : P. Bonche and J. Meyer, Private comm. (2002).

9

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Resonant ionization mass spectroscopy system :COMPLIS

Desorption

Excitation

Ionization

Excitation

Target

Ion detector (MCP)

Magnet

Incident beam at 60 kV Emergent beam at 59 kV

Ion source (stables)Magnet

INJECTOR

10

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

graphite YAGbeam

dtca

resolution

MHz250

a

Ionization volume

First stagebeamIonization

beams

Ground state

Ionization continuum

351,7 nm (UV)

323,29 nm (UV)

646,58 nm (rouge)

Ionization zonedesorbed atoms

Dye laserlambda-physik

2

tunablemonomodedye laser

« compulsé »

YAGpumping10 Hz

2

1 atome/100

totalefficiency

10-5-10-6

YAGpumping10 Hz

Characteristics of the COMPLIS set-up

ZOOM

11

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Principle of the fast beam collinear laser spectroscopy

E=mv vEnergy spread

velocity spread

The kinematic compression of the velocity distribution

results in a reduction of the residual doppler width

D=0vcResidual

doppler width

Velocity v

Velocity v+v

Laser source fixed frequency

Frequency in the rest frame of the atoms

The hyperfine structure is scanned by a beam energy scan

with U=10-4, ~50 MHz

12

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

COLLINEAR laser spectroscopy system

electrons

Ion source

Mass separator

Photomultiplier

Retardation system

Charge-exchange cell

Ellipsoïdalmirror

High resolution laser

Separated beam

RFQ cooler-buncher

13

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

A. Transport : 70 %B. Neutralization : 80 % C. Feeding probability of the selected metastable state : 30%D. Spatial overlap between laser beam and ion beam : 5 10- 3

E. Resonance efficiency : 100%F. De-excitation efficiency : 50%

G. Collection efficiency : : 5 %

H. Detection efficiency : 90 %

TOTAL : ~10-5

4

Efficiency

but : signal/noise ratio strongly increased by the use of the cooler buncher

14

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

A few details on the cooler…

Ion deceleration 10eV

F. Herfurth NIM A 469 (2001) 254(ISOLTRAP)

Pulsed cavity

UcavityUHV

Ions

UHVUcavity

transfert

Ekin=e.( UHV-Ucavity )

Buffer gas

Ions

grounded UHV

Longitudinal potential shape

Ions

trapping

ejection

15

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

•Ag (Z=47) : from A=111 to A=123 (or further from the stability line depending on the effective productions) complete the measurements on this isotopic chain on the right side of the valley of stability•Transition : Z.Phys. A274 (1975)79.

• Ge (Z=32) : from A=77 to A=83 N=50 crossing

•then, les Br, As and Ga towards Ni, Sb, I, ...

547.7 nm

206 nm

422.7 nm

303.9 nm

First measurements at ALTO

N=50

16

TAS Workshop LPC Caen, March 30-31, 2004 D. Verney

Coût et main d’œuvreCoût et main d’œuvre

Lentilles d’accélérationralentissement

Cellule àéchange de charge

Miroirellipsoïdal

Laser hauterésolution

1. Ligne de faisceau, éléments d’optique ionique et pompage : 50 k€

2. Cellule à échange de charge : LAC ou Mainz

3. Détection : 10 k€

4. Lasers et optique : 200 k€

5. Acquisition et commande : 40 k€

6. Total : 300 k€

Durée du montage et de la mise au point : 2 ans à 2 chercheurs plein temps plus aide service technique (construire l’acquisition et réaliser la ligne de faisceau)

F. Le Blanc IPN