Laser Cladding Finite Element Modelling€¦ · PowerPoint Presentation Author: Tran Created Date:...

Post on 29-Jul-2020

4 views 0 download

Transcript of Laser Cladding Finite Element Modelling€¦ · PowerPoint Presentation Author: Tran Created Date:...

1

Laser Cladding Finite Element Modelling Application to Ti6Al4V

TRAN Hoang-Son

BRUSTEN Romain

JARDIN Ruben,

PAYDAS Harkan,

DUCHENE Laurent

LECOMTE BECKERS Jacqueline.

HABRAKEN Anne Marie

20 Mai 2016

University of Liège

2

1. Introduction

Outline

²

5. Conclusion & Perspectives

2. Experimental

4. Validation & Limitations

2

3. Simulation

3

Introduction

²

3

Bhattacharya & al. (2011)

Innovative

technology

Production of

dense parts

Multilayer metal

deposit

Very high cooling

rates

(ultrafine grain

microstructure) Sirris

Need of a thermal model: Study of processing parameters:

laser power

powder flow

preheating temperature (T°)

laser beam velocity

4

Introduction

²

4

Reproduction of the experiment described in the article: Laser claddingas a repair technologyfor Ti6Al4V alloy: influence of incident energy and building strategy on microstructure and hardness. H.Paydas, A.Mertens, R.Carrus, J. Lecompte-Beckers and J.TchoufangTchuindjang.

«MacroClad» et «Constant tracklength» building strategy

5

Experimental

²

5

Focus on the first layer

6 6

Synthesis of measures of the depth HAZ - ADD166

Experimental

²

7 7

Experimental

² Thermo physical properties of materials

8

Results of Romain

²

8

24 393 Nodes 26 991 Elements for 2 tracks

9 9

11 056 Nodes 9030 Solid Elements + 5340 CONRA Elements for 7 tracks

Simulation

²

3D finite element mesh

10 10

Simulation

²

(Costa 2005)

Form of laser beam and its distribution

Scheme showing the cylindrical

radius of the laser used by Sirris Scheme showing the laser power

density of the laser used by Sirris

Schematic showing Gaussian

distribution of laser

Power density concentration

1.4 mm

1.6 mm

11 11

Simulation

² Flux_1 Flux_3

Flux_2

Flux_2=2×Flux_1 Flux_3=4×Flux_1

Flux_2=1,5×Flux_1 Flux_3=2×Flux_1

12 12

Simulation

²

Effect of Convection & Radiation Parameters

Effect of point positions

2mm

3mm

13 13

Simulation

²

14 14

Simulation

²

15 15

5 10 15 20 25 30 35 40 45 50 55

400

500

600

700

800

900

Times (s)

Te

mp

era

ture

(K

)Times-Temperature

K.C.Mills Parameters

H.Paydas Parameters

Experimental

Validation

²

16 16

Validation

²

Section 1

Section 2

17 17

Validation

²

Section 1

Section 2

2530μm

2840μm

hDL

hDL (Dilution depth)=480μm

18

Validation

²

18

Allotropic Transformation (β→α)

Section 1

hHAZ = 1500μm → 1600μm Dilution depth = 450μm → 500μm

hHAZ = 1750μm

Micrographe - H.Paydas

19

Limitation

²

19

Temps [s] Diagramme de refroidissement – Ahmed et al.

Tem

pér

atu

re [

°C]

Carte de dureté – CTL – Paydas et al.

𝛼 𝛼

Microstructure analysis Numerical study

20

Conclusion & Perspectives

²

20

• Simulation results by Lagamine in line with experimental observations. • Time consuming < 2days for one layers (7 tracks)

Resume

• Fully couple thermo-mechanical analysis. • Define the links between the process parameters and the

microstructure.

Perpective