J. Gao - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...Basic theory of dynamic aperture...

Post on 22-Jan-2020

3 views 0 download

Transcript of J. Gao - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...Basic theory of dynamic aperture...

Overview of Different Colliders

J. Gao

Institute of High Energy Physics

Mini workshop on MDI for CollidersJan. 16-17, 2020, IAS, Hongkang

Outline

• Review of some accelerator theories for colliders

• Historical review of e+e- circular coliders

• Historical review of e+e- linear colliders

• Historical review of hadron hadron circular colliders

• Historical review of electron proton circular colliders

• Summary

2

Review of some acelerator theories for colliders

3

Luminosity from Colliding Beams• For equally intense Gaussian beams

• Expressing luminosity in terms of our usual beam parameters

RNfLy

b

x

2

4

Geometrical factor: - crossing angle - hourglass effect

Particles in a bunch

Transverse beam size (RMS)

Collision frequency

4

where

Analyical expression for the maximum value of is the keystone of a circular collider both for lepton and hadron one

max,y

In ACO it is foundthat has a maximumvalue

For exampe, for DCIat 800MeV

y

024.0y

max2845

6p

IP

r

f x RN

dtt

xfx

0

2

)2

exp(2

21)(

IPpIP Nr

Rxf

N

xfx

6

2845

)(4)(4 2

max

2

For lepton collider:

For hadron collider:

J. Gao, “Review of some important beam physics issues

in electron positron collider designs”,

Modern Physics Letters A, Vol. 30, No. 11 (2015)

1530006 (20 pages)

J. Gao, et al, "Analytical estimation of maximum

beam-beam tune shifts for electron-positron and hadron

circular colliders", Proceedings of ICFA Workshop on

High Luminosity Circular e+e- Colliders – Higgs Factory, 2014

IPRNer

61

2845maxy,

re is electron radiusγ is normalized energyR is the dipole bending radiusNIP is number of interaction points

rp is proton radius

max,2

maxx, y J. Gao, Nuclear Instruments and Methods in Physics

Research A 533 (2004) 270–274

J. Gao, Nuclear Instruments and Methods in Physics Research A 463 (2001) 50–61

where

IPy N 0T2

2845maxy, π

Maximum Beam-beam tune shift analytical expressions for lepton and hadron circular colliders

Keystones

For example: BEPCII@1.89GeV 04.0y

For example: SppC@75TeV 0056.0y

Basic theory of dynamic aperture in circular accelerator

J. Gao, “Analytical estimation of the dynamic apertures ofcircular accelerators”, Nuclear Instruments and Methods in Physics Research A 451 (2000) 545-557.

A nonlinear multipole

For one multipole

For more independent multipoles

DA relation between X and Y

Standard MappingChirikov Criterion

Hénon and Heiles problem

Circular machine

m≥3

Many multipoles

Dynamic aperture analytical expressionsare basestonesfor circularaccelerators

Analytical expression of dynamic apertures

Linear Hamiltonion+nonlinear perriodickicks

Analytical formulae for the dynamic aperturs with momentum deviation

On momentum

Off momentum

This analytical method has been applied successfullyin BEPCII and will be used in CEPC DA optimaization to increase optimization efficiency

Comparison results of BEPC-II DA by numerical andanalytical methods

Theories for e+e- linear colliders

8J. Gao, “Parameter choice for international linear collider (ILC)”, High energy physics and nulcear physics, Vol. 30 Suppl 1, Feb. 2006

Original ideas for colliders

9

10

1rst Proposal (1943)

J. Haissinski, “A historical account of the first electron positron circular collider-Ada”

IHEP Seminar, Oct. 9, 2018 invited by Prof. Jie Gao

11

2nd Proposal (April 1956) 3rd Proposal (June 1956)

12

4th Proposal (1956) 5th Proposal (1958)

13

6th Proposal

Electron positron circular colliders

14

Marica Biagini and J. Gao

B-factories: KEKB & PEP-II:double-ring lepton colliders, high beam currents,top-up injection

DAFNE: crab waist, double ring

Super B-factories, S-KEKB: low by*

LEP: high energy, SR effects

VEPP-4M, LEP: precision E calibration

KEKB: e+ source

HERA, LEP, RHIC: spin gymnastics combining successful ingredients of several recent colliders → highest luminosities & energies

L/IP

Future circular lepton factories based on proven concepts and techniques from past colliders and light sources

ACO,VEPP

Ada

J.L.Xie

B. Touschek, P. Marin and J. Haissinski

P. MarinJ. Le Duff

DCI

16

17

18

Historical Review-2 (Ada)

Linac at LAL/Orsay

Adaat LAL

J. Haissinski worked at Ada

P. Marin and J. Haissinski

Book byP. Marin

Touschek effectfirst found in Ada

(1962-1964)

19

Historical Review-3 (ACO) (1962-1975)

The first beam-beam tune shift limitation foundin the world

The first diople magnet detector and antisolenoid

The first using sextupoles to correct chromaticity

The first observation experimentally electron andpositron polarisation

The first observation of bunch lengthening

....

ACO as a museum in LAL, Orsay

P. Marin The book of P. Marin was published with the help of ACO Association after P. Marin passed away in 2003

20

Historical Review-4 (CDI) (1971-1985)

The first two ring electron positron colliderin the world

The first experiments on four beam collisionto compensate beam-beam effects

The first individual sextupoles to correct chromaticity

....

2004 in the office of Prof. J. Haissinski, LAL, Orsay, France

J. Gao from 1989-2005at LAL, In2p3/CNRS,Orsay, France

SuperKEKB• Piwinski angle z/xqc=20• by

*=0.3mm

http://www-superkekb.kek.jp/

qc: half crossing angle2qc

CEPC CDR Baseline Layout

CEPC collider ring (100km) CEPC booster ring (100km)

CEPC Linac injector (1.2km, 10GeV)

H

W and Z

SInce 2012 Sept

CEPC CDR Parameters Higgs W Z(3T) Z(2T)Number of IPs 2Beam energy (GeV) 120 80 45.5Circumference (km) 100Synchrotron radiation loss/turn (GeV) 1.73 0.34 0.036Crossing angle at IP (mrad) 16.5×2Piwinski angle 2.58 7.0 23.8Number of particles/bunch Ne (1010) 15.0 12.0 8.0Bunch number (bunch spacing) 242 (0.68s) 1524 (0.21s) 12000 (25ns+10%gap)Beam current (mA) 17.4 87.9 461.0Synchrotron radiation power /beam (MW) 30 30 16.5Bending radius (km) 10.7Momentum compact (10-5) 1.11b function at IP bx* / by* (m) 0.36/0.0015 0.36/0.0015 0.2/0.0015 0.2/0.001Emittance ex/ey (nm) 1.21/0.0031 0.54/0.0016 0.18/0.004 0.18/0.0016Beam size at IP x /y (m) 20.9/0.068 13.9/0.049 6.0/0.078 6.0/0.04Beam-beam parameters x/y 0.031/0.109 0.013/0.106 0.0041/0.056 0.0041/0.072RF voltage VRF (GV) 2.17 0.47 0.10RF frequency f RF (MHz) (harmonic) 650 (216816)Natural bunch length z (mm) 2.72 2.98 2.42Bunch length z (mm) 3.26 5.9 8.5HOM power/cavity (2 cell) (kw) 0.54 0.75 1.94Natural energy spread (%) 0.1 0.066 0.038Energy acceptance requirement (%) 1.35 0.4 0.23Energy acceptance by RF (%) 2.06 1.47 1.7Photon number due to beamstrahlung 0.1 0.05 0.023

Lifetime _simulation (min) 100

Lifetime (hour) 0.67 1.4 4.0 2.1F (hour glass) 0.89 0.94 0.99Luminosity/IP L (1034cm-2s-1) 2.93 10.1 16.6 32.1

parameter Z WW H (ZH) ttbar

beam energy [GeV] 45 80 120 182.5

beam current [mA] 1390 147 29 5.4

no. bunches/beam 16640 2000 393 48

bunch intensity [1011] 1.7 1.5 1.5 2.3

SR energy loss / turn [GeV] 0.036 0.34 1.72 9.21

total RF voltage [GV] 0.1 0.44 2.0 10.9

long. damping time [turns] 1281 235 70 20

horizontal beta* [m] 0.15 0.2 0.3 1

vertical beta* [mm] 0.8 1 1 1.6horiz. geometric emittance [nm] 0.27 0.28 0.63 1.46vert. geom. emittance [pm] 1.0 1.7 1.3 2.9

bunch length with SR / BS [mm] 3.5 / 12.1 3.0 / 6.0 3.3 / 5.3 2.0 / 2.5luminosity per IP [1034 cm-2s-1] 230 28 8.5 1.55beam lifetime rad Bhabha / BS [min] 68 / >200 49 / >1000 38 / 18 40 / 18

FCC-ee collider parameters SInce 2013 Jan

Electron positron linear colliders

25

26

Valery TELNOV, “Linear colliders: history”, Budker INP, NovosibirskIHEP Seminar, Beijing, December 6, 2018, invited by Prof. Jie Gao

27

28

29

30

Now!~2020

31

32

33

Hadron hadron circular colliders

34

Evolution of the Energy Frontier (hadron)

~a factor of 10 every 15 years

Courtesy W. Fischer

HL-LHC

LHeC

CERN ISR held luminosity world record for >2 decades

Tevatron is presentfrontier machine

factor 30

factor 10 ELIC

Frank Zimmermann, “Hadron and Hadron-Lepton Colliders”Special Beam Physics Symposium in Honor of Yaroslav Derbenev's 70th BirthdayJefferson Lab, Newport News, 3 August 2010

Past, planned but abandoned & operating hadron colliders

ISR (p-p) 1970-1983 0.03/0.03 TeVSPS (p-pbar) 1981-1990 0.3/0.3 TeV[CHEEP (e± -p) †1978 (?) 0.03/0.3 TeV] [PEP (e± -p) †1981 (?) 0.015/0.3 TeV] [TRISTAN (e± -p) †1983 (?) 0.03/0.3 TeV]ISABELLE/CBA (p-p) †1983 0.4/0.4 TeVTevatron (p-pbar) 1987-2011? 1/1 TeV?HERA (e± ↑ -p) 1991-2007 0.03/1 TeV?UNK (p-p) †1992 (?) 3/3 TeV SSC (p-p) †1993 20/20 TeVRHIC (p↑-p↑ & A-A) 2000-? 0.3/0.3 TeVLHC (p-p & A-A) 2009-2030? 3.5/3.5 & 7/7 TeV

38

Lyn Evans, “The long road to the LHC”, Higgs hunting, Orsay 25th June 2018

At the beginning of the 1960’s a debate was raging about the next step for CERN. Opinions were sharply divided between a “large PS”, a proton machine of 300 GeV energy or a much more ambitious colliding beam machine, the Intersecting Storage Rings (ISR). In order to try to guide the discussion, in February 1964, 50 physicists from among Europe’s best met at CERN. They decided to transform themselves into a European Committee for Future Accelerators (ECFA) under the chairmanship of Eduardo Amaldi. It took nearly 2 years more before the consensus was formed. On 15th December 1965, with the strong support of Amaldi, the CERN Council approved the construction of the Intersecting Storage Rings

CERN ISR proved On 15th December 1965

Intersecting Storage Rings 1970-83– space-charge tune shift &

spread, trapped e−– proton-electron

instabilities, pressure bumps

– detector background– beam brightness from

injector and accumulation– coherent beam-beam

effects– missed discovery of the

J/ψ and other new particles (no central detector)

– I =38–50 A, coasting beam, 31 GeV– L ≈ 2.2 × 1032 cm−2s−1 peak

luminosity– with bunched beams ξ =

0.0035 per IP (8 crossings)– first p-pbar collisions

limitations & successes:

40

1968 Van der Meer – idea of stochastic cooling.

1972 Schottky signals observed and interpreted at the ISR.Van der Meer publishes paper on stochastic betatron cooling of transverse emittance.

1972 Schnell feasibility study of stochastic cooling experiment at the ISR.

1973 Discovery of weak neutral currents.

1974 First experimental demonstration of stochastic cooling.Rubbia et al. propose p-pbar colliding beam experiment at the SPS.

1976 First design report. ICE construction started.

1981 FIrst collisions in the SPS

SPS timeline

SppbarS 1981-90

– beam-beam interaction– loss of longitudinal Landau damping– number of antiprotons– hourglass effect– intrabeam scattering– first p-pbar collider– 10× ISR energy (315 GeV)– beam-beam tune shift ξ = 0.005 with 3 crossings– discovery of W and Z

limitations & successes:

Tevatron 1987-2011

– number of antiprotons– beam-beam interaction incl. long-range– luminosity lifetime– events per crossing– intrabeam scattering– first superconducting collider– 980 GeV beam energy– p-pbar collisions like SPS– beam-beam tune shift ξ = 0.02!– high-energy e- cooling– discovery of b and t

limitations & successes:

HERA 1991-2007

– beam from injector– beam-beam interaction– international contributions

“HERA model”– longitudinally polarized e±

– first hadron-lepton collider

limitations & successes:

RHIC 2001-

– intrabeam scattering– beam-beam interaction– luminosity lifetime– electron cloud– events per crossing– longitudinally polarized protons– stochastic cooling– first heavy-ion collider– established existence of

quark-gluon plasma

limitations & successes:

– 87 km circumference– 20 TeV beam energy – L=1033 cm-2s-1

– halted after 14 miles of tunneling were completed & 2 billion dollars spent

SSC †1993

Large Hadron Collider 2009-2030(?)

– p-p and A-A collider– c.m. energy 14 TeV– design p-p luminosity 1034 cm-2s-1

– 1st collisions in 2009

LHC baseline luminosity was pushed in competition with SSC

successes:

5 DGS

• Preliminary conceptual studies 1984• First magnet models 1988• Start structured R&D program 1990• Approval by CERN Council 1994• Industrialization of series production 1996-1999• DUP & start civil works 1998• Adjudication of main procurement contracts 1998-2001• Start installation in tunnel 2003• Cryomagnet installation in tunnel 2005-2007• Functional test of first sector 2007• Commissioning with beam 2008• Operation for physics 2010-2017

• LHC-HL 2021-

LHC timeline

10 September 2008 - first beam in LHC

Hadron collider integrated luminositiesISR (1970-1983): ? (~1/fb?)SPS (1982-1990): ~0.02/fbHERA (1991-2007): 0.8/fbRHIC : (2000-2009) ~0.2/fb (p-p)Tevatron (1987-2011): ~10/fbLHC (August 2010): ~0.001/fb

LHC goal 2010: 0.1/fb, LHC 2011: 1/fb forecast 2020: 300-400/fb, 2030: 3000/fb

Possible future hadron colliders (2010 point of view)

HL-LHC (p-p & A-A) 2020 7/7 TeVHE-LHC (p-p & A-A) 2035? 16.5/16.5 TeVVLHC (p-p) 2035? 100/100 TeVELOISATRON (p-p) [when?] 100/100 TeVNICA (A-A) 2014? 4.5/4.5 GeV/nucleonENC (e± ↑ -A↑) 2015? 3/15 GeVELIC/MEIC (e± ↑ -p↑, e± ↑ -A↑) 2015? 60/3 GeVeRHIC (e± ↑ -p↑, e± ↑ -A↑) 2015? 325/20 GeVLHeC (e± ↑ -p↑, e± ↑ -A↑) 2025? 0.06-0.14/7-16.5 TeV

→ high luminosity, high energy

SPPC Parameter Choice and ComparationF. SuCDR

SppC injector chain

Major parameters for the injector chain

Beam parameters

24/06/2019 53

• Long CDR and table of beam parameters nel long CDR mancano quelli di HE –LHC ! (pagina 11)

• Luminosity reach

• Beam evolution?

LHC HL-LHC

FCC-hh Initial FCC-hh Nominal

C.M. Energy [TeV] 14 100

Injection Energy [TeV] 0.45 3.3

Peak Luminosity [1034cm-2s-1] 1.0 5.0 5 <30

Integrated Luminosity/day [fb-1] 0.47 2.8 2.2 8

Bunch distance Δt [ns] 25 25

Bunch charge N [1011] 1.15 2.2 1

Number of bunches 2808 10400

Norm. emitt. [mm] 3.75 2.5 2.2

Max ξ for 2 IPs 0.01 0.015 0.01(0.02)

0.03

IP beta-function β [m] 0.55 0.15 1.1 0.3

IP beam size σ [m] ~16 ~7 6.8 3.5

RMS bunch length σz [cm] 7.55 8

Assumed Turn-around time [h] 5 4

Stored Energy per beam [GJ] 0.392 0.694 8.3

SR power per ring [MW] 0.0036 0.0073 2.4

D. Schulte et al.

parameter FCC-hh SppC HL-LHC LHC

collision energy cms [TeV] 100 75 14 14dipole field [T] 16 12 8.33 8.33circumference [km] 97.75 100 26.7 26.7

beam current [A] 0.5 0.73 1.1 0.58

bunch intensity [1011] 1 1 1.5 2.2 1.15bunch spacing [ns] 25 25 25 25 25synchr. rad. power / ring [kW] 2400 1100 7.3 3.6SR power / length [W/m/ap.] 28.4 12.8 0.33 0.17long. emit. damping time [h] 0.54 1.17 12.9 12.9beta* [m] 1.1 0.3 0.75 0.15 (min.) 0.55normalized emittance [m] 2.2 2.4 2.5 3.75peak luminosity [1034 cm-2s-1] 5 30 10 5 (lev.) 1events/bunch crossing 170 1000 ~300 132 27stored energy/beam [GJ] 8.4 9.1 0.7 0.36

FCC-hh and SppC collider parameters

Electron ion circular colliders

55

Future hadron-lepton collidersParameters ENC ELIC eRHIC LHeC

option RR RR LR RR LR

P-A/e- energy [GeV] 15/3.3 60/3 325/20 7000/60 7000/60

√(s) [GeV] 14 27 160-102 1296 1296

luminosity [1032 cm-2s-1] 2 400 140 17 10

P/e- polarization [%] 80/80 70/80 /40 /90

P/e- bunch popul. [109] 5.4/23 11/60 200/24 170/26 170/2.0

P/e- bunch length [mm] 0.3/0.1 5 49/20 /10 /0.3

P/e- bunch interval [ns] 19 74 25-50 25-50

P/e- tr. emit. ex,y [μm] 0.8/75 1200/25000 3.75/580,290 3.75/50

IP beam size x,y [μm] 30, 16 7

full crossing angle [mrad] 0.93 0

geometric reduction Hhg 0.77 0.91

Energy Recovery efficien. - - 94? - 94%

average current [mA] 860/4800 420/50 131 6.6

tot. wall plug power[MW] 100 100

J.-P.Delahaye,ICHEP’10

57

Parameters of Electron Collider Ring

October 29 – November 1, 2018 Fall 2018 EIC Accelerator Collaboration Meeting 58

Electron beam momentum GeV/c 5cm 10/2m 487 / 438m 0.44 / 0.47

57(.22) / 50(.16)

-124 / -129

9.97 10-4 31.67

Parameters of Ion Collider Ring

October 29 – November 1, 2018 Fall 2018 EIC Accelerator Collaboration Meeting 59

Electron beam momentum GeV/c 100cm 10/2m 2500 / 2500m 5.4

24(.22) / 23(.16)

-107 / -127

12.78

60

DOE proved eRHIC CD0 at BNLin Jan. 2020

61

RR LHeC: new ring in LHC tunnel,with bypassesaround experiments

RR LHeCe± injector 10 GeV,10 min. filling time

LR LHeC:recirculatinglinac withenergy recovery

Taking advantage of the existing LHC proton ring 7 TeV (to 16.5 TeV in HE)

62

LHeC at CERN

1033cm2s1, L 100 fb1,E e 60GeV10 GeV injector intobypass of P12 1010e (LEP: 4 1011)~10 min filling time synchronous ep + pp

Newly built magnetsinstalled on top ofthe LHC bypassingLHC experiments.

M. Klein

LHeC: ring-ring configuration

64

NICA-Dubna

References1) J. Haïssinski, A Historical Account ofThe First Electron-Positron Circular Collider, IHEP Seminar, Beijing, October 9, 2018, ,invited by Prof. Jie Gao2) Valery TELNOV, “Linear colliders: history”, Budker INP, NovosibirskIHEP Seminar, Beijing, December 6, 2018, invited by Prof. Jie Gao3)Frank Zimmermann, “Hadron and Hadron-Lepton Colliders”Special Beam Physics Symposium in Honor of Yaroslav Derbenev's 70th BirthdayJefferson Lab, Newport News, 3 August 20104) Lyn Evans, “The long road to the LHC”, Higgs hunting, Orsay 25th June 20185) Rui Li, “Impedance and CollectiveInstabilities in JLEIC”, eeFACT2018, September 25, 20186) WencanXu, “RF systems for eRHIC”, eeFACT, Sept. 24-27, 2018FCC-ee design overview7) F. Zimmermann, “FCC-ee design overviewFCC-ee design overview”, FCC Week 2019 Brussels, 24 June 20198)Barbara Dalena, “FCC-hh design”, EuroCirCol WP2+3 , June 24, 20199) J. Gao, CEPC-SppC Status, IAS HEP Conference, Jan. 21-24, 201910) Michael Benedikt, “Overview on Future Circular Colliders “, EPPSU, May, Granada, Spain11) J. Gao, “Review of some important beam physics issuesin electron positron collider designs”, Modern Physics Letters AVol. 30, No. 11 (2015) 1530006 (20 pages)

65

66

J. L. Xie since 1986 (photo 1992)

J.L. Duff , photo 2004

J. L.Duff since 1989 (photo 1992)

D.Davier, J.L. Duff and J, Haissinskiphoto 1996

J, Haissinski photo 2004

J.L.Xie and his students

67

PEPII since 2003, photo in 2019 LC since 1989, and ILC since2005, photo in 2005

Photo in 2010

Super KEK B, photo in 2018 March 19 Photo in June 2018 Photo in Nov. 2018 (eRHIC and JLIEC group)