IX1 Arsenic Removal by Ion Exchange Joe Chwirka - Camp Dresser & McKee (chwirkajd@cdm.com) Bruce...

Post on 16-Dec-2015

216 views 1 download

Tags:

Transcript of IX1 Arsenic Removal by Ion Exchange Joe Chwirka - Camp Dresser & McKee (chwirkajd@cdm.com) Bruce...

IX 1

Arsenic Removal by Ion Exchange

Joe Chwirka - Camp Dresser & McKee (chwirkajd@cdm.com)

Bruce Thomson - University of New Mexico (bthomson@unm.edu)

with contributions from Jerry Lowry and Steve Reiber

IX 2

Introduction

• Arsenic removal by Ion Exchange (IX) is effective for many applications

• Presentation will discuss:

• Chemistry of the process

• Variables affecting process performance

• Especially competing ions and resin selectivity

• Salt use & brine production and disposal

• Design considerations

• Two example systems

IX 3

Arsenic Treatment Technologies

Likely Technologies• Coagulation/ Microfiltration• Fixed Bed Adsorption Technologies• Coagulation/ Filtration• POU or POE

Unlikely Technologies• Ion Exchange• Activated Alumina or Regenerable Media• NF or RO or EDR• Enhanced Softening

IX 4

Ion Exchange Reactions

• Cation Exchange (water softening)

2 (R-Na) + Ca2+ = R2-Ca + 2 Na+

• Anion Exchange (arsenic removal)

R-Cl + H2AsO4- = R-H2AsO4 + Cl-

• Will only remove ionic species

• Regenerate resin with concentrated NaCl brine

R = Resin site

IX 5

BACKWASHTO WASTE

RAW WATER

RINSE TOWASTE

TREATED WATERRAW WATERFOR BACKWASH

BRINE TANK(NaCI)

Softening Processes

Ion Exchange System

IX 6

Point of Entry Softening

IX 7

Cation and Anion Exchange System

IX 8

Acid-Base Chemistry of As(V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

pH

Fra

ctio

n

H3AsO4 H2AsO4- HAsO4

2-AsO4

3-

IX 9

Acid-Base Chemistry of As(III)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10 12 14

pH

Fra

ctio

n

H3AsO3

H2AsO3-

HAsO32-

AsO33-

IX 10

Resin Selectivity Sequence

• Strong Base Type II Anion Resin selectivity sequence

UO2(CO3)34- > SO4

2- > HAsO42- > NO3

- > H2AsO4- > Cl- > HCO3

-

• All SO42- must be removed before As is removed

• Other anions may also have higher selectivity than As (i.e. VO43-)

IX 11

Concentration Profiles in IX Column

• All SO42- is removed before

HAsO42- is removed

• Can result in chromatographic peaking:

• SO42- elutes HAsO4

2- from resin

• Effluent As concentrations are much higher than influent concentrations

Re sin Sa tura te dwith SO 4

2 -

S Re m o va lZo ne

O 42 -

Re sin Sa tura te dwith HAsO 4

2-

Virg in Re sin

C o nc e ntra tio n

Sulfate

Arse

nic

Influe nt

Efflue nt

IX 12

Chromatographic Peaking

IX 13

Chromatographic Peaking

IX 14

Chromatographic Peaking

IX 15

SEPARATION & BREAKTHROUGH

•Kinetics & EBCT

•Bed Capacity & SO42-

•Leakage

•As & N03- Peaking

•Alkalinity, pH/Corrosivity

IX 16

Kinetics & Empty Bed Contact Time

• Exchange kinetics are rapid and internal mass transport limitations are small

• Empty Bed Contact Time (EBCT)

• EBCTmin = 1.5 min

• Breakthrough is sharp & leakage is low

Q

V

RateFlow

BedEmpty of .VolEBCT

Be d Vo lum e s o f Wa te r Tre a te d

Dim

ens

ionl

ess

Co

nce

ntra

tion

(C/C

)o

Arse nic

Su lfa te

IX 17

Bed Capacity & SO42-

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350

SULFATE, mg/L

BV T

O A

s BR

EAKT

HRO

UGH

Sulfate RemovalTechnology!

IX 18

IX System - Unity, ME

• 11 Years Old

• As(III) at ≈100 µg/L

• Trace of Sulfide & Fe

• 65 gpm Design Flow

• Filox Oxidizing Filter

• SB II Anion Resin

IX 19

FJ School IX System

• Filox + IX• 1200 gpd• As ≈ 25-60 µg/L (sol)• SO4

2- ≈ 25 mg/L• pH = 7.6• Capable of < 1.0 µg/L

treated water

IX 20

EPA Study at Medical Facility - Arsenic

IX 21

EPA Study at Medical Facility - pH & Alkalinity

IX 22

Design

• EBCT = 1.5 min

• operated to regen. BEFORE SO4

2- causes breakthrough

• down flow service & regeneration

• single or multiple beds

• single or multiple brine use

IX 23

Process Design

Small Systems• single or double vessels

• EBCT > 1.5 min and long service cycle

• intermittent flow

• single use of brine

• may not be feasible w/o POTW for brine disposal

Large Systems• multiple parallel vessels

• staged regeneration

• possible reuse of brine

• may not be cost effective w/o POTW for brine disposal

IX 24

Regeneration

Small Systems• use a standard softener

control & small brine tank

• 8-15 lb salt used/cf of resin

• backwash, brine, slow rinse, & fast rinse

Large Systems• parallel vessels and staged

regeneration with salt storage & brine maker

• 5.4 lb salt used/cf of resin

• backwash, brine, & rinse steps

IX 25

Brine Disposal Options

• Municipal sewer

• Likely only for very small systems

• Systems near coast where salinity isn’t problem

• Evaporation ponds

• Deep well injection

IX 26

IX Brine Recycling

Brine TankPrecip.Tank

IX

BaSO4 IX Regeneration

Brine Reuse

BaCl2

After 3 Cycles

IX 27

IX 28

IX 29

Fruitland, Idaho

• Water Chemistry

• As – 34 micrograms/L

• Nitrate - 14.6 mg/L

• Sulfate - 51 mg/L

• pH - 7.3

1,500 X sulfate 429 X nitrate 1,929

IX 30

IX 31

10 gpm waterloss

IX 32

Floor DrainTo POTW

10 gpmWater loss

IX 33

IX 34

IX 35

IX 36

Plan Ahe

a d

IX 37

IX 38

Floor DrainTo POTW

•Sequentially regenerated•pH •Alkalinity

•6 – 8,000 lb salt/week @ $0.10/lb•50% production loss for 5 hours (~85 gpm)

•Regenerate 1/30 hours

IX 39

Rimrock, Arizona

Basin Water IX

IX 40

$ per acre-foot

IX 41

IX 42

IX 43

IX 44

IX 45

IX 46

IX 47

IX 48

Ten in parallelSeven in production•pH•Alkalinity•Chromatographic peaking

IX 49

IX 50

IX 51

Truck fill

IX 52