Introduction to Southern Hybridization - Welcome to SRM ... · Introduction to Southern...

Post on 19-May-2018

224 views 3 download

Transcript of Introduction to Southern Hybridization - Welcome to SRM ... · Introduction to Southern...

Introduction to Southern Hybridization

Outline

• History/Background Info

• Goals of Southern hybridization

• Example

• Other applications

History/Background

• ‘Southern’ hybridization named after Sir Edwin Southern

• Developed in 1975

• One of the most highly cited scientific publications

• Earned Sir Southern a Lasker Award in 2005

History/Background

• Spawned naming of related techniques:

Southern blot(DNA)

Northern blot(RNA)

Western blot(Protein)

Eastern blot(???)

Goals of Southern Hybridization

• Immobilize DNA onto a permanent substrate

• Identify DNA sequence (gene) of interest

Step 1. Restriction Enzyme Digestion

EcoR I EcoR I EcoR I EcoR I

Step 1. Restriction Enzyme Digestion

Step 2. Gel Electrophoresis

_ +

Step 2. Gel Electrophoresis

_ +

Step 2. Gel Electrophoresis

Goals of Southern Hybridization

Immobilize DNA onto a permanent substrate

• ‘Membrane’– paper‐like matrix

– nylon or nitrocellulose

– usually has a slight positive charge

Step 3. DNA Denaturation

T G A A TC

A C AT T G

• Eliminate hydrogen bonds with sodium hydroxide (NaOH)

Step 4. Transfer DNA to Membrane

• Two methods for transferring DNA to a membrane– capillary– electrophoretic

Step 4. Transfer DNA to Membrane

Goals of Southern Hybridization

• Immobilize DNA onto a permanent substrate

• Identify DNA sequence (gene) of interest

Step 5. Making a Probe

• A probe is a small (25‐2000 bp) length of DNA or RNA– Complementary to the sequence (gene) of interest

– Labeled for subsequent detection procedures

Step 5. Making a Probe

Gene Xfrom Arabidopsis

Partial or full-lengthprobes by PCR

Step 5. Making a Probe

Gene Xfrom Arabidopsis

Partial probes by random-priming

Step 5. Making a Probe

Denature template with heat

Step 5. Making a Probe

Add random primers

Step 5. Making a Probe

Extend random primers with polymerase

Step 5. Making a Probe

A probe complementary to the sequence (Gene X) of interest!

Step 5. Making a Probe

• How do we detect the probe?– Radioactivity (32P)

Step 5. Making a Probe

• How do we detect the probe?– Digoxigenin (DIG)

U

Step 4. Transfer DNA to Membrane

Step 6. Pre‐hybridization

Prehybridization bufferscontain ‘blocking reagents’that occupy available binding sites on the membrane

Step 7. Hybridization

Step 7. Hybridization

Step 8. Washes

Step 9. Anti‐DIG

Step 9. Anti‐DIG

Step 10. Washes

Step 11. CSPD

Step 12. Detection

• DIG‐labeled probes emitting minute amounts of light (chemiluminescence)

• 32P‐labeled probes emitting ß‐particles

Step 12. Detection

• DIG‐labeled probes emitting minute amounts of light (chemiluminescence)

• 32P‐labeled probes emitting ß‐particles

• Autoradiography film can detect this radiation

Conclusion

• How many copies of ‘Gene X’ does Capsella rubellapossess?

Capsella rubella

3

Other Applications

• DNA fingerprinting– RFLP of VNTRs

• Dot or slot blot

• Colony or plaque lifts

• Microarray analysis

Other Applications

• DNA fingerprinting– RFLP of VNTRs

• Dot or slot blot

• Colony or plaque lifts

• Microarray analysis

Other Applications

• DNA fingerprinting– RFLP of VNTRs

• Dot or slot blot

• Colony or plaque lifts

• Microarray analysis

Other Applications

• DNA fingerprinting– RFLP of VNTRs

• Dot or slot blot

• Colony or plaque lifts

• Gene Expression

Other Applications

• Microarray technology