Into the Design of Smart Materials: Self-Immolative ChemistrySELF-IMMOLATIVE CHEMISTRY: Structural...

Post on 03-Jan-2020

2 views 0 download

Transcript of Into the Design of Smart Materials: Self-Immolative ChemistrySELF-IMMOLATIVE CHEMISTRY: Structural...

SELF-IMMOLATIVE CHEMISTRY: Structural Features and Applications in Designing Smart Materials

Wei Sheng

1/15/14

1

A Changeable Plastic Film

Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234-9235. 2

What is “Self-immolative”?

15min, 23˚C

0.3 M TBAF

THF/PBS

EtOAc

Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234-9235. 3

What is “Self-immolative”?

The trick is…….

?

Ito, H.; Wilson, C. G. Polym. Eng. Sci. 1983, 23, 1012-1018.

Seo, W.; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234-9235. 4

What is “Self-immolative”?

Self-Immolative: the Nature of PPHA

Ceiling Temperature:

Tpolymerization = Tdepolymerization

180 ˚C -40 ˚C

SELF-IMMOLATIVE

F- responsive: Pd(II) responsive:

Senter, P. D.; Pearce, W. E.; Greenfield, R. S.; J. Org. Chem. 1990, 55, 2975-2978.

Li, S.; Szalai, M. L.; Kevwitch, R. M.; McGrath, D. V. J. Am. Chem. Soc. 2003, 125, 10516-10517. 5

Basic Structures

Structures and Degradation Patterns

Type I: Via Quinone-Methide Cascade

1,6-elimination

Modification Tolerance

Sella, E.; Shabat, D. J. Am. Chem. Soc. 2009, 131, 9934-9936.

de Groot, F. M. H.; Loos, W. J.; Koekkoek, R.; et al. J. Org. Chem. 2001, 66, 8815-8830.

6

Basic Structures

Structures and Degradation Patterns

Type I: Via Quinone-Methide Cascade

1,4-elimination

Modification Tolerance

Amir, R. J.; Pessah, N.; Shamis, M.; ; Shabat, D. Angew. Chem. Int. Ed. 2003, 42, 4494-4499. 7

Basic Structures

Structures and Degradation Patterns

Modification Tolerance

DeWit, M. A.; Gillies, E. R. J. Am. Chem. Soc. 2009, 131, 18327-18334.

Meyer, Y.; Richard, J-A.; Massonneau, M.; Renard, P-Y.; Romieu, A. Org. Lett. 2008, 10, 1517-1520.

Seo, W; Phillips, S. T. J. Am. Chem. Soc. 2010, 132, 9234-9235.

8

Basic Structures

Structures and Degradation Patterns

Type II: Via Intramolecular Cyclization Cascade

Type III: Via Hemiacetal Cascade

Modification Tolerance

Peterson, G. I.; Larsen, M. B.; Boydston, A. J. Macromolecules. 2012, 45, 7317-7328. 9

Basic Structures

Scope of End-Capping Units

Trigger Class Structure and Response to Stimulus Stimulus

Cap Self-Immolative-Core Leaving Moiety

Trigger RXN

10 Peterson, G. I.; Larsen, M. B.; Boydston, A. J. Macromolecules. 2012, 45, 7317-7328.

Basic Structures

Scope of End-Capping Units

Trigger Class Structure and Response to Stimulus Stimulus

11

Common Issues of Small Molecular Therapeutics

Drug Delivery

12

Drug Delivery

Common Issues of Small Molecular Therapeutics

Low Target Specificity

Severe Adverse Effects

Sun, Q.; Wang, J.; Radosz, M.; Shen, Y. Polymer-Based Prodrugs for Cancer Therapy. RSC Polymer Chemistry Series

No. 3 Functional Polymers for Nanomedicine. 2013 13

Prodrug: solution to increase specificity

Drug-Delivery

D Cleavage Site

Prodrug: Precursor of active drug

Bui, D.T.; Makismenko, A.; Desmaele, D.; et al, J. Biomacromolecules. 2013, 14, 2837-2847.

Rohini; Neeraj, A.; Anupam, J.; Alok, M. J. Antivir. Antiretrovir. 2013, S15. doi: 10.4172/jaa.S15-007. 14

Polymer-Based Prodrug

Drug-Delivery

Cleavage

Site

D

Biodegradable

Linker

Polymer

Backbone

Modifier

(PEGylation)

Targeting

Moiety

(antibody)

Self-assembly

No Burst Release

Passive Targeting

Prolonged Circulation

Eldon et. al. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. 2007.

Park K. Quant. Imaging Med. Surg. 2012, 2, 106-113.

15

Drug-Delivery

Enhanced Permeability and Retention (EPR)

Angiogenesis

Seymour, L. W.; Ferry, D. R.; Kerr, D. J.; et al. Int. J. Oncol. 2009, 34, 1629-1636.

16

Drug Delivery

Problems with Classical Polymer-based Prodrug

Self-immolative ?

HPMA Polymer

Peptide Linker

Drug

Enzyme selectivity Cleavage efficiency

• Maximum dosage • Blood Clearance • Induced resistance

Release Rate

Drug spacer Drug S

S

Carl, P. L.; Chakravarty, P. K.; Katzenellenbogen; J. A. J. Med. Chem. 1981, 24, 479-480.

17

Drug Delivery

How to Speed Up Releasing? Self-Immolative Spacer

Drug Drug

Model System

Enzyme

Enzyme

Enzyme Enzyme

S S

de Groot, F. M. H.; Loos, W. J.; Koekkoek, R.; et al. J. Org. Chem. 2001, 66, 8815-8830. 18

Drug Delivery

Length Effect of Self-Immolative Linker

T50 (h): half-life of complete degradation

1.66

0.82

0.57 Plasmin

Substrate

Self-immolative

Spacers

Doxorubicin

Lebreton, S.; Newcombe, N.; Bradley, M. Tetrahedron Lett. 2002, 43, 2475-2478. 19

Drug Delivery

Increase Drug Payload?

G3 dendron

Focal point

Polymer Backbone

Biodegradable

Enzyme approachable?

20

Drug Delivery

Self-Immolative Dendron

Erez, R.; Segal, E.; Millier, K.; Satchi-Fainaro, R.; Shabat, D. Bioorg. Med. Chem. 2009, 17, 4327-4335.

21

Drug Delivery

Self-Immolative Dendron

Erez, R.; Segal, E.; Millier, K.; Satchi-Fainaro, R.; Shabat, D. Bioorg. Med. Chem. 2009, 17, 4327-4335.

22

Drug Delivery

Self-Immolative Comb-Copolymer

Erez, R.; Segal, E.; Millier, K.; Satchi-Fainaro, R.; Shabat, D. Bioorg. Med. Chem. 2009, 17, 4327-4335.

Erez, R.; Segal, E.; Millier, K.; Satchi-Fainaro, R.; Shabat, D. Bioorg. Med. Chem. 2009, 17, 4327-4335.

23

Drug Delivery

Comparison: Self-immolative vs. Classical

Inhibition of proliferation of TRAMP C2 cells

Erez, R.; Segal, E.; Millier, K.; Satchi-Fainaro, R.; Shabat, D. Bioorg. Med. Chem. 2009, 17, 4327-4335.

24

Drug Delivery

Comparison: Self-immolative vs. Classical

Inhibition of proliferation of TRAMP C2 cells

Schmid, K. M.; Jensen, L.; Phillips, S. T. J. Org. Chem. 2012, 77, 4363-4374. 25

Primitive Structure-Degradation Study

Understand the Self-Immolation: Monomer Structure

Model Reaction

26 Schmid, K. M.; Jensen, L.; Phillips, S. T. J. Org. Chem. 2012, 77, 4363-4374.

Primitive Structure-Degradation Study

Understand the Self-Immolation: Monomer Structure

Robbins, J. S.; Schmid, K. M.; Phillips, S. T. J. Org. Chem. 2013, 78, 3159-3169. 27

Primitive Structure-Degradation Study

Understand the Self-Immolation: Chain Length

McBride, R. A.; Gillies, E. R. Macromolecules. 2013, 46, 5157-5166.

28

Primitive Structure-Degradation Study

Understand the Self-Immolation: Chain Length

29

Chemical Sensing

Chemical Sensing in Our lives

Fluoride US EPA Maximum Contaminant Level = 4ppm

WHO guideline = 1.5 ppm

Website of United States Environmental Protection Agency 30

For example,

Chemical Sensing

Palladium European Medical Agency

PdCl2 LD50= 3 mg/Kg body weight

31

Traditional Chemical Sensing

Chemical Sensing

Zhu, B.; Kan, H.; Liu, J.; Liu, H.; Wei, Q.; Du, B. Biosensors and Bioelectronics. 2014, 52, 298-303.

Kaur, K.; Saini, R.; Kumar, A.; Luxami, V.; Kaur, N.; Singh, P.; Kumar, S.; Coord. Chem. Rev. 2012, 256, 1992-2008.

32

Chemical Sensing

Current Methods: Reaction-based Indication

LoD = 70 μM λem = 596 nm λem = 612 nm

LoD = 0.5 ppm

Highly fluorescent Nonfluorescent

Cho, D-G.; Sessler, J. L. Chem. Soc. Rev. 2009, 38, 1647-1662. 33

Chemical Sensing

Reaction-based indicator system?

Analyte Reporter Trigger • Reporter efficiency • Linear Input/Output

Self-immolative

Trigger cleavage

34

Trigger 1

Trigger 2 Trigger 2

Sella, E.; Shabat, D. J. Am. Chem. Soc. 2009, 131, 9934-9936.

Chemical Sensing

Signal amplification: Dendritic-Chain Reaction (DCR)

Sella, E.; Shabat, D. J. Am. Chem. Soc. 2009, 131, 9934-9936.

35

Chemical Sensing

DCR technique

LoD = 5 μM

Feigenbaum-Perry, R.; Sella, E.; Shabat, D. Chem. Eur. J. 2011, 17, 12123-12128.

Zhu, L.; Anslyn, E. V. Angew. Chem. Int. Ed. 2006, 45, 1190-1196.

36

Chemical Sensing

DCR technique

LoD = 2 μM

Use fluoride to detect fluoride

Inspiration from Nature

Sella, E.; Lubelski, A.; Klafter, J.; Shabat, D. J. Am. Chem. Soc. 2010, 132, 3945-3952.

37

Chemical Sensing

2 Components DCR

Trigger 1

Trigger 2

Trigger 2

Baker, M. S.; Phillips, S. T. J. Am. Chem. Soc. 2011, 133, 5170-5173.

38

Chemical Sensing

A Surprisingly Simple Pd(II) Sensing Array

LoD = 0.36 ppm

Lewis, G. G.; Robbins, J. S.; Phillips, S. T. Anal. Chem. 2013, 85, 10432-10439.

39

Chemical Sensing

NOT just a reaction

A prototype paper-based chip quantifying active enzymes

Alkaline Phosphatase:

320 pM - 14.8 nM

Tmeasurement = Ttotal - Tassay

Lewis, G. G.; Robbins, J. S.; Phillips, S. T. Anal. Chem. 2013, 85, 10432-10439.

40

Chemical Sensing

The Fabrication

Hydrophobic

paper

Hydrophilic

paper

HEPES

buffer

MgCl2

Green

Dye

Enzyme

substrate

Enzyme substrate

& immoblized GOx

Self-immolative

oligomer

Lewis, G. G.; Robbins, J. S.; Phillips, S. T. Anal. Chem. 2013, 85, 10432-10439.

41

Chemical Sensing

General Working Principle

42

Funny

Again, don’t limit chemistry to the reactions!

Zhang, H.; Yeung, K.; Robbins, J. S.; et al. Angew. Chem. Int. Ed. 2012, 51, 2400-2404.

A single-use analyte-responsive microscale pump

• Dr. Babak Borhan,

• Dr. Xuefei Huang,

• Arvind, Kumar, Tanya, Ipek, Nastaran, Hadi,

Bardia, Yi, Liz, Edy, Jun, Xinliang,

• Zeren, Tayeb.

43

Acknowledgement