Intel Nervana Artificial Intelligence Meetup 1/31/17

Post on 08-Feb-2017

696 views 0 download

Transcript of Intel Nervana Artificial Intelligence Meetup 1/31/17

Proprietary and confidential. Do not distribute.

Introduction to deeplearning with neon

MAKING MACHINES SMARTER.™

Nervana Systems Proprietary

2

• Intel Nervana overview• Machine learning basics

• What is deep learning?

• Basic deep learning concepts

• Example: recognition of handwritten digits

• Model ingredients in-depth

• Deep learning with neon

Nervana Systems Proprietary

Intel Nervana‘s deep learning solution stack

3

Images

Video

Text

Speech

Tabular

Time series

Solutions

Nervana Systems Proprietary

Deep Dream

Autoencoders

Deep Speech 2

Skip-thought

SegNet

Fast-RCNN Object Localization

Deep Reinforcement Learning

imdb Sentiment Analysis

Video Activity Detection

Deep Residual Net

bAbI Q&A

AIICNN AlexNet GoogLeNet

VGG

https://github.com/NervanaSystems/ModelZoo

Nervana Systems Proprietary

Intel Nervana in action

5

Healthcare: Tumor detection

Automotive: Speech interfacesFinance: Time-series search engine

Positive:

Negative:

Agricultural Robotics Oil & Gas

Positive:

Negative:

Proteomics: Sequence analysis

Query:

Results:

Nervana Systems Proprietary

• Optimized AVX-2 and AVX-512 instructions• Intel® Xeon® processors and Intel® Xeon Phi™ processors• Optimized for common deep learning operations

• GEMM (useful in RNNs and fully connected layers)• Convolutions• Pooling• ReLU• Batch normalization

• Coming soon: LSTM, GRU, Winograd-based convolutions

6

Nervana Systems Proprietary

Nervana Systems Proprietary

8

• Intel Nervana overview

• Machine learning basics• What is deep learning?

• Basic deep learning concepts

• Example: recognition of handwritten digits

• Model ingredients in-depth

• Deep learning with neon

Nervana Systems Proprietary

9

• SUPERVISED LEARNING

• DATA -> LABELS

• UNSUPERVISED LEARNING

• NO LABELS; CLUSTERING

• REDUCING DIMENSIONALITY

• REINFORCEMENT LEARNING

• REWARD ACTIONS (E.G., ROBOTICS)

Nervana Systems Proprietary

10

• SUPERVISED LEARNING

• DATA -> LABELS

• UNSUPERVISED LEARNING

• NO LABELS; CLUSTERING

• REDUCING DIMENSIONALITY

• REINFORCEMENT LEARNING

• REWARD ACTIONS (E.G., ROBOTICS)

Nervana Systems Proprietary

11

(𝑓#, 𝑓%, … , 𝑓')

SVMRandom ForestNaïve BayesDecision TreesLogistic RegressionEnsemble methods

𝑁×𝑁

𝐾 ≪ 𝑁

Arjun

Nervana Systems Proprietary

12

Animals

FacesChairs

Fruits

Vehicles

Nervana Systems Proprietary

Animals

FacesChairs

Fruits

Vehicles

13

Nervana Systems Proprietary

Animals

FacesChairs

Fruits

Vehicles

14

Training error

x

x

x

x

x

x

x

x x

xx

x xxx x

xxx

x

x

xxx

xxx

Testing error

Nervana Systems Proprietary

15

Training Time

Erro

r

Training Error

Testing/Validation Error

Underfitting Overfitting

Bias-Variance Trade-off

Nervana Systems Proprietary

16

• Intel Nervana overview

• Machine learning basics

• What is deep learning? • Basic deep learning concepts

• Example: recognition of handwritten digits

• Model ingredients in-depth

• Deep learning with neon

Nervana Systems Proprietary

17

~60 million parameters

Arjun

But old practices apply: Data Cleaning, Underfit/Overfit, Data exploration, right cost function, hyperparameters, etc.

𝑁×𝑁

Nervana Systems Proprietary

18

Bigger Data Better Hardware Smarter Algorithms

Image: 1000 KB / pictureAudio: 5000 KB / song

Video: 5,000,000 KB / movie

Transistor density doubles every 18 months

Cost / GB in 1995: $1000.00Cost / GB in 2015: $0.03

Advances in algorithm innovation, including neural networks, leading to better accuracy in training models

Nervana Systems Proprietary

19

Nervana Systems Proprietary

20

• Intel Nervana overview

• Machine learning basics

• What is deep learning?

• Basic deep learning concepts• Model ingredients in-depth

• Deep learning with neon

Nervana Systems Proprietary

𝑦𝑥%

𝑥0

𝑥#

𝑎

max(𝑎, 0)

𝑡𝑎𝑛ℎ(𝑎)

Output of unit

Activation FunctionLinear weights Bias unit

Input from unit j

𝒘𝟏

𝒘𝟐

𝒘𝟑

𝑔∑

Nervana Systems Proprietary

InputHidden

Output

Affine layer: Linear + Bias + Activation

Nervana Systems Proprietary

MNIST dataset 70,000 images (28x28 pixels)Goal: classify images into a digit 0-9

N = 28 x 28 pixels = 784 input units

N = 10 output units (one for each digit)

Each unit i encodes the probability of the

input image of being of the digit i

N = 100 hidden units (user-defined parameter)

InputHidden

Output

Nervana Systems Proprietary

N=784N=100

N=10

Total parameters:

𝑊@→B, 𝑏B𝑊B→D, 𝑏D

𝑊@→B

𝑏B𝑊B→D𝑏D

784x100100100x1010

= 84,600

𝐿𝑎𝑦𝑒𝑟𝑖𝐿𝑎𝑦𝑒𝑟𝑗

𝐿𝑎𝑦𝑒𝑟𝑘

Nervana Systems Proprietary

InputHidden

Output 1. Randomly seed weights2. Forward-pass3. Cost4. Backward-pass5. Update weights

Nervana Systems Proprietary

InputHidden

Output

𝑊@→B, 𝑏B ∼ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,1)

𝑊B→D, 𝑏D ∼ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,1)

Nervana Systems Proprietary

0.00.10.00.30.10.10.00.00.40.0

Output (10x1)

28x28

InputHidden

Output

Nervana Systems Proprietary

0.00.10.00.30.10.10.00.00.40.0

Output (10x1)

28x28

InputHidden

Output0001000000

Ground Truth

Cost function𝑐(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑡𝑟𝑢𝑡ℎ)

Nervana Systems Proprietary

0.00.10.00.30.10.10.00.00.40.0

Output (10x1)

InputHidden

Output0001000000

Ground Truth

Cost function𝑐(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑡𝑟𝑢𝑡ℎ)

Δ𝑊@→B Δ𝑊B→D

Nervana Systems Proprietary

InputHidden

Output 𝐶 𝑦, 𝑡𝑟𝑢𝑡ℎ

𝑊∗

𝜕𝐶𝜕𝑊∗

compute

Nervana Systems Proprietary

InputHidden

Output 𝐶 𝑦, 𝑡𝑟𝑢𝑡ℎ = 𝐶 𝑔 ∑(𝑊B→D𝑥D + 𝑏D)

𝑊∗

Nervana Systems Proprietary

InputHidden

Output 𝐶 𝑦, 𝑡𝑟𝑢𝑡ℎ = 𝐶 𝑔 ∑(𝑊B→D𝑥D + 𝑏D)

𝑎(𝑊B→D, 𝑥D)=

𝑊B→D∗𝜕𝐶𝜕𝑊∗ =

𝜕𝐶𝜕𝑔 \

𝜕𝑔𝜕𝑎 \

𝜕𝑎𝜕𝑊∗

a

𝑔 = max(𝑎, 0)

a

𝑔′(𝑎)

= 𝐶 𝑔(𝑎 𝑊B→D, 𝑥D )

Nervana Systems Proprietary

InputHidden

Output 𝐶 𝑦, 𝑡𝑟𝑢𝑡ℎ = 𝐶 𝑔D(𝑎D 𝑊B→D, 𝑔B(𝑎B(𝑊@→B, 𝑥B))

𝜕𝐶𝜕𝑊∗ =

𝜕𝐶𝜕𝑔D

\𝜕𝑔D𝜕𝑎D

\𝜕𝑎D𝜕𝑔B

\𝜕𝑔B𝜕𝑎B

\𝜕𝑎B𝜕𝑊∗

𝐶 𝑦, 𝑡𝑟𝑢𝑡ℎ = 𝐶 𝑔D 𝑎D(𝑊B→D, 𝑥D = 𝑦B

𝑦B

𝑊@→B∗

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

𝑑𝐽 𝒘(_)

𝑑𝒘

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

𝒘(#) = 𝒘(_) −𝑑𝐽 𝒘(_)

𝑑𝒘

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

𝒘(#) = 𝒘(_) − 𝛼𝑑𝐽 𝒘(_)

𝑑𝒘

learning rate

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

𝒘(#) = 𝒘(_) − 𝛼𝑑𝐽 𝒘(_)

𝑑𝒘

𝒘(#)

too small

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

𝒘(#) = 𝒘(_) − 𝛼𝑑𝐽 𝒘(_)

𝑑𝒘

𝒘(#)

too large

Nervana Systems Proprietary

𝐽 𝒘(_) =`𝑐𝑜𝑠𝑡(𝒘(_), 𝒙𝑖)b

@c#

𝒘𝒘(_)

𝒘(#) = 𝒘(_) − 𝛼𝑑𝐽 𝒘(_)

𝑑𝒘

𝒘(#)

good enough

Nervana Systems Proprietary

𝐽 𝒘(#) =`𝑐𝑜𝑠𝑡(𝒘(#), 𝒙𝑖)b

@c#

𝒘𝒘(%)

𝒘(%) = 𝒘(#) − 𝛼𝑑𝐽 𝒘(#)

𝑑𝒘

𝒘(#)

Nervana Systems Proprietary

𝐽 𝒘(%) =`𝑐𝑜𝑠𝑡(𝒘(%), 𝒙𝑖)b

@c#

𝒘

𝒘(0) = 𝒘(%) − 𝛼𝑑𝐽 𝒘(%)

𝑑𝒘

𝒘(%)𝒘(0)

Nervana Systems Proprietary

𝐽 𝒘(0) =`𝑐𝑜𝑠𝑡(𝒘(0), 𝒙𝑖)b

@c#

𝒘

𝒘(g) = 𝒘(0) − 𝛼𝑑𝐽 𝒘(0)

𝑑𝒘

𝒘(g)

𝒘(0)

Nervana Systems Proprietary

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

Nervana Systems Proprietary

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

Update weights via:

Δ𝑊 = 𝛼 ∗1𝑁`𝛿𝑊

Learning rate

Nervana Systems Proprietary

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

fprop cost bprop 𝛿𝑊

minibatch #1 weight update

minibatch #2 weight update

Nervana Systems Proprietary

Epoch 0

Epoch 1

Sample numbers:• Learning rate ~0.001• Batch sizes of 32-128• 50-90 epochs

Nervana Systems Proprietary

SGDGradient Descent

Nervana Systems Proprietary

Krizhevsky, 2012

60 million parameters

120 million parameters Taigman, 2014

Nervana Systems Proprietary

50

• Intel Nervana overview

• Machine learning basics

• What is deep learning?

• Basic deep learning concepts

• Model ingredients in-depth• Deep learning with neon

Nervana Systems Proprietary

Dataset Model/Layers Activation OptimizerCost

𝐶(𝑦, 𝑡)

Nervana Systems Proprietary

Filter + Non-Linearity

Pooling

Filter + Non-Linearity

Fully connected layers

“how can I help you?”

cat

Low level features

Mid level features

Object parts, phonemes

Objects, words

*Hinton et al., LeCun, Zeiler, Fergus

Filter + Non-Linearity

Pooling

Nervana Systems Proprietary

Tanh Rectified Linear UnitLogistic

-1

11

0

𝑔 𝑎 =𝑒j

∑ 𝑒jk�D

Softmax

Nervana Systems Proprietary

Gaussian Gaussian(mean, sd)

GlorotUniform Uniform(-k, k)

Xavier Uniform(k, k)

Kaiming Gaussian(0, sigma)

𝑘 =6

𝑑@m + 𝑑nop

𝑘 =3𝑑@m

𝜎 =2𝑑@m

Nervana Systems Proprietary

• Cross Entropy Loss

• Misclassification Rate

• Mean Squared Error

• L1 loss

Nervana Systems Proprietary

0.00.10.00.30.10.10.00.00.40.0

Output (10x1)

0001000000

Ground Truth

−`𝑡D×log(𝑦D)�

D= −log(0.3)

Nervana Systems Proprietary

0.3 0.3 0.4

0.3 0.4 0.3

0.1 0.2 0.7

0 0 1

0 1 0

1 0 0

Outputs Targets Correct?YY

N

0.1 0.2 0.7

0.1 0.7 0.2

0.3 0.4 0.3

0 0 1

0 1 0

1 0 0

YY

N

-(log(0.4) + log(0.4) + log(0.1))/3=1.38

-(log(0.7) + log(0.7) + log(0.3))/3=0.64

Nervana Systems Proprietary

• SGD with Momentum

• RMS propagation

• Adagrad

• Adadelta

• Adam

Nervana Systems Proprietary

Δ𝑊# Δ𝑊% Δ𝑊0 Δ𝑊g

training time

𝛼pcxy =𝛼

∑ Δ𝑊p%pcx

pc_�

Nervana Systems Proprietary

Δ𝑊# Δ𝑊% Δ𝑊0 Δ𝑊g

training time

𝛼pcgy =𝛼

Δ𝑊%% + Δ𝑊0

% + Δ𝑊g%�

Nervana Systems Proprietary

61

• Intel Nervana overview

• Machine learning basics

• What is deep learning?

• Basic deep learning concepts

• Model ingredients in-depth

• Deep learning with neon

Nervana Systems Proprietary

Nervana Systems Proprietary

Nervana Systems Proprietary

•Popular, well established, developer familiarity

•Fast to prototype

•Rich ecosystem of existing packages.

•Data Science: pandas, pycuda, ipython, matplotlib, h5py, …

•Good “glue” language: scriptable plus functional and OO support,

plays well with other languages

Nervana Systems Proprietary

Backend NervanaGPU, NervanaCPU

DatasetsMNIST, CIFAR-10, Imagenet 1K, PASCAL VOC, Mini-Places2, IMDB, Penn Treebank,

Shakespeare Text, bAbI, Hutter-prize, UCF101, flickr8k, flickr30k, COCO

Initializers Constant, Uniform, Gaussian, Glorot Uniform, Xavier, Kaiming, IdentityInit, Orthonormal

Optimizers Gradient Descent with Momentum, RMSProp, AdaDelta, Adam, Adagrad,MultiOptimizer

Activations Rectified Linear, Softmax, Tanh, Logistic, Identity, ExpLin

LayersLinear, Convolution, Pooling, Deconvolution, Dropout, Recurrent,Long Short-

Term Memory, Gated Recurrent Unit, BatchNorm, LookupTable,Local Response Normalization, Bidirectional-RNN, Bidirectional-LSTM

Costs Binary Cross Entropy, Multiclass Cross Entropy, Sum of Squares Error

Metrics Misclassification (Top1, TopK), LogLoss, Accuracy, PrecisionRecall, ObjectDetection

Nervana Systems Proprietary

1. Generate backend2. Load data3. Specify model architecture4. Define training parameters5. Train model6. Evaluate

Nervana Systems Proprietary

NERVANA

andres.rodriguez@intel.com