Insights into Large Complex Systems via Random Matrix Theory · Akemann et al. (eds) [2011]The...

Post on 13-Jul-2020

1 views 0 download

Transcript of Insights into Large Complex Systems via Random Matrix Theory · Akemann et al. (eds) [2011]The...

Insights into Large Complex Systemsvia Random Matrix Theory

Lu Wei

SEAS, Harvard

06/23/2016 @UTC Institute for Advanced Systems Engineering

University of Connecticut

Lu Wei Random Matrix Theory and Large Complex Systems 1 / 19

Random Matrix Theory

Random Matrix Theory

Lu Wei Random Matrix Theory and Large Complex Systems 2 / 19

Random Matrix Theory

Random Matrix Theory

milestones

Wishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])

Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])

Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])

Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])

KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physics

Akemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Random Matrix Theory

Random Matrix Theory

milestonesWishart distribution (Wishart [1928])Semicircle law (Wigner [1955])Marchenko-Pastur law (Marchenko-Pastur [1967])Tracy-Widom law (Tracy-Widom [1990s])KPZ universality class (Johansson [2000s])

tools from almost all branches of mathematics and physicsAkemann et al. (eds) [2011] The Oxford Handbook of Random MatrixTheory. Oxford University Press

applications: biology, data sciences, economics, information theory,machine learning, wireless communications,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 3 / 19

Product of Random Matrices

Product of Random Matrices

joint works with Akemann, Hero, Kieburg, Liu, Tarokh, Zhang, Zheng

Lu Wei Random Matrix Theory and Large Complex Systems 4 / 19

Product of Random Matrices

Products of Random Matrices

Crisanti et al. [1993] Products of Random Matrices in StatisticalPhysics. Springer

Müller [2002] On the asymptotic eigenvalue distribution ofconcatenated vector-valued fading channels, IEEE Trans. Inf. Theory

y = Hx + w, where H = Hn · · ·H2H1

H1 H2 Hn

Tx. Rx. cluster 1 cluster 2 cluster n-1

x y

w

an earlier attempt via eigenvalues and singular values relation

Lu Wei Random Matrix Theory and Large Complex Systems 5 / 19

Product of Random Matrices

Products of Random Matrices

Crisanti et al. [1993] Products of Random Matrices in StatisticalPhysics. Springer

Müller [2002] On the asymptotic eigenvalue distribution ofconcatenated vector-valued fading channels, IEEE Trans. Inf. Theory

y = Hx + w, where H = Hn · · ·H2H1

H1 H2 Hn

Tx. Rx. cluster 1 cluster 2 cluster n-1

x y

w

an earlier attempt via eigenvalues and singular values relation

Lu Wei Random Matrix Theory and Large Complex Systems 5 / 19

Product of Random Matrices

Products of Random Matrices

Crisanti et al. [1993] Products of Random Matrices in StatisticalPhysics. Springer

Müller [2002] On the asymptotic eigenvalue distribution ofconcatenated vector-valued fading channels, IEEE Trans. Inf. Theory

y = Hx + w, where H = Hn · · ·H2H1

H1 H2 Hn

Tx. Rx. cluster 1 cluster 2 cluster n-1

x y

w

an earlier attempt via eigenvalues and singular values relation

Lu Wei Random Matrix Theory and Large Complex Systems 5 / 19

Product of Random Matrices

Products of Random Matrices

Crisanti et al. [1993] Products of Random Matrices in StatisticalPhysics. Springer

Müller [2002] On the asymptotic eigenvalue distribution ofconcatenated vector-valued fading channels, IEEE Trans. Inf. Theory

y = Hx + w, where H = Hn · · ·H2H1

H1 H2 Hn

Tx. Rx. cluster 1 cluster 2 cluster n-1

x y

w

an earlier attempt via eigenvalues and singular values relation

Lu Wei Random Matrix Theory and Large Complex Systems 5 / 19

Product of Random Matrices

Products of Random Matrices

Crisanti et al. [1993] Products of Random Matrices in StatisticalPhysics. Springer

Müller [2002] On the asymptotic eigenvalue distribution ofconcatenated vector-valued fading channels, IEEE Trans. Inf. Theory

y = Hx + w, where H = Hn · · ·H2H1

H1 H2 Hn

Tx. Rx. cluster 1 cluster 2 cluster n-1

x y

w

an earlier attempt via eigenvalues and singular values relation

Lu Wei Random Matrix Theory and Large Complex Systems 5 / 19

Product of Random Matrices

Products of Random Matrices

Crisanti et al. [1993] Products of Random Matrices in StatisticalPhysics. Springer

Müller [2002] On the asymptotic eigenvalue distribution ofconcatenated vector-valued fading channels, IEEE Trans. Inf. Theory

y = Hx + w, where H = Hn · · ·H2H1

H1 H2 Hn

Tx. Rx. cluster 1 cluster 2 cluster n-1

x y

w

an earlier attempt via eigenvalues and singular values relation∗

∗W., Zheng, Tirkkonen, Hämäläinen [2013] On the ergodic mutual information of multiple cluster scattering MIMOchannels, IEEE Commun. Lett.

Lu Wei Random Matrix Theory and Large Complex Systems 5 / 19

Product of Random Matrices

Products of Random Matrices

H = Hn · · ·H2H1

n = 1 – Wishart-Laguerre ensemble Bronk [1965]

p (λ1, . . . , λm) ∝ det2(λj−1

k

) m∏i=1

e−λi

n arbitraryAkemann, Kieburg, W. [2013] Singular value correlationfunctions for products of Wishart random matrices, J. Phys. A

p (λ1, . . . , λm) ∝ det(λj−1

k

)det (fj(λk ))

fj(x) = Gm,00,m

(x

∣∣∣∣∣ −0, . . . , 0, j − 1

)= 1

2πı

∮L du x−uΓm−1(u)Γ(u + j − 1)

Lu Wei Random Matrix Theory and Large Complex Systems 6 / 19

Product of Random Matrices

Products of Random Matrices

H = Hn · · ·H2H1

n = 1 – Wishart-Laguerre ensemble Bronk [1965]

p (λ1, . . . , λm) ∝ det2(λj−1

k

) m∏i=1

e−λi

n arbitraryAkemann, Kieburg, W. [2013] Singular value correlationfunctions for products of Wishart random matrices, J. Phys. A

p (λ1, . . . , λm) ∝ det(λj−1

k

)det (fj(λk ))

fj(x) = Gm,00,m

(x

∣∣∣∣∣ −0, . . . , 0, j − 1

)= 1

2πı

∮L du x−uΓm−1(u)Γ(u + j − 1)

Lu Wei Random Matrix Theory and Large Complex Systems 6 / 19

Product of Random Matrices

Products of Random Matrices

H = Hn · · ·H2H1

n = 1 – Wishart-Laguerre ensemble Bronk [1965]

p (λ1, . . . , λm) ∝ det2(λj−1

k

) m∏i=1

e−λi

n arbitraryAkemann, Kieburg, W. [2013] Singular value correlationfunctions for products of Wishart random matrices, J. Phys. A

p (λ1, . . . , λm) ∝ det(λj−1

k

)det (fj(λk ))

fj(x) = Gm,00,m

(x

∣∣∣∣∣ −0, . . . , 0, j − 1

)= 1

2πı

∮L du x−uΓm−1(u)Γ(u + j − 1)

Lu Wei Random Matrix Theory and Large Complex Systems 6 / 19

Product of Random Matrices

Products of Random Matrices

H = Hn · · ·H2H1

n = 1 – Wishart-Laguerre ensemble Bronk [1965]

p (λ1, . . . , λm) ∝ det2(λj−1

k

) m∏i=1

e−λi

n arbitrary†

p (λ1, . . . , λm) ∝ det(λj−1

k

)det (fj(λk ))

fj(x) = Gm,00,m

(x

∣∣∣∣∣ −0, . . . , 0, j − 1

)= 1

2πı

∮L du x−uΓm−1(u)Γ(u + j − 1)

†Akemann, Kieburg, W. [2013] Singular value correlation functions for products of Wishart random matrices, J. Phys. A

Lu Wei Random Matrix Theory and Large Complex Systems 6 / 19

Product of Random Matrices

Products of Random Matrices

H = Hn · · ·H2H1

n = 1 – Wishart-Laguerre ensemble Bronk [1965]

p (λ1, . . . , λm) ∝ det2(λj−1

k

) m∏i=1

e−λi

n arbitrary†

p (λ1, . . . , λm) ∝ det(λj−1

k

)det (fj(λk ))

fj(x) = Gm,00,m

(x

∣∣∣∣∣ −0, . . . , 0, j − 1

)= 1

2πı

∮L du x−uΓm−1(u)Γ(u + j − 1)

†Akemann, Kieburg, W. [2013] Singular value correlation functions for products of Wishart random matrices, J. Phys. A

Lu Wei Random Matrix Theory and Large Complex Systems 6 / 19

Product of Random Matrices

Products of Random Matrices

H = Hn · · ·H2H1

n = 1 – Wishart-Laguerre ensemble Bronk [1965]

p (λ1, . . . , λm) ∝ det2(λj−1

k

) m∏i=1

e−λi

n arbitrary†

p (λ1, . . . , λm) ∝ det(λj−1

k

)det (fj(λk ))

fj(x) = Gm,00,m

(x

∣∣∣∣∣ −0, . . . , 0, j − 1

)= 1

2πı

∮L du x−uΓm−1(u)Γ(u + j − 1)

†Akemann, Kieburg, W. [2013] Singular value correlation functions for products of Wishart random matrices, J. Phys. A

Lu Wei Random Matrix Theory and Large Complex Systems 6 / 19

Product of Random Matrices

Applications to Capacity Analysis

ergodic capacity Akemann-Kieburg-W. [2013]

E[ m∑

i=1

log (1 + γλi)

]

outage capacity of orthogonal space-time codes, i.e., distribution ofm∑

i=1

λi

outage capacity of double-cluster channels, i.e., distribution ofm∑

i=1

log (1 + γλi) for n = 2

Lu Wei Random Matrix Theory and Large Complex Systems 7 / 19

Product of Random Matrices

Applications to Capacity Analysis

ergodic capacity Akemann-Kieburg-W. [2013]

E[ m∑

i=1

log (1 + γλi)

]

outage capacity of orthogonal space-time codes, i.e., distribution ofm∑

i=1

λi

outage capacity of double-cluster channels, i.e., distribution ofm∑

i=1

log (1 + γλi) for n = 2

Lu Wei Random Matrix Theory and Large Complex Systems 7 / 19

Product of Random Matrices

Applications to Capacity Analysis

ergodic capacity Akemann-Kieburg-W. [2013]

E[ m∑

i=1

log (1 + γλi)

]

outage capacity of orthogonal space-time codes‡, i.e., distribution ofm∑

i=1

λi

outage capacity of double-cluster channels, i.e., distribution ofm∑

i=1

log (1 + γλi) for n = 2

‡W., Zheng, Corander, Taricco [2015] On the outage capacity of orthogonal space-time block codes over multi-clusterscattering MIMO channels, IEEE Trans. Commun.

Lu Wei Random Matrix Theory and Large Complex Systems 7 / 19

Product of Random Matrices

Applications to Capacity Analysis

ergodic capacity Akemann-Kieburg-W. [2013]

E[ m∑

i=1

log (1 + γλi)

]

outage capacity of orthogonal space-time codes‡, i.e., distribution ofm∑

i=1

λi

outage capacity of double-cluster channels§, i.e., distribution ofm∑

i=1

log (1 + γλi) for n = 2

‡W., Zheng, Corander, Taricco [2015] On the outage capacity of orthogonal space-time block codes over multi-clusterscattering MIMO channels, IEEE Trans. Commun.

§Zheng, W., Speicher, Müller, Hämäläinen, Corander On the fluctuation of mutual information of double-clusterscattering MIMO channels: A free probability approach, IEEE Trans. Inf. Theory, under revision, arXiv:1502.05516

Lu Wei Random Matrix Theory and Large Complex Systems 7 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitraryLiu, W., Zhang Singular values for spiked products ofcomplex Ginibre matrices

λ1 BBP phase transitioncritical value σcrit = n + 1

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitraryLiu, W., Zhang Singular values for spiked products ofcomplex Ginibre matrices

λ1 BBP phase transitioncritical value σcrit = n + 1

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitraryLiu, W., Zhang Singular values for spiked products ofcomplex Ginibre matrices

λ1 BBP phase transitioncritical value σcrit = n + 1

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitraryLiu, W., Zhang Singular values for spiked products ofcomplex Ginibre matrices

λ1 BBP phase transitioncritical value σcrit = n + 1

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)

critical value σcrit = 2

n arbitraryLiu, W., Zhang Singular values for spiked products ofcomplex Ginibre matrices

λ1 BBP phase transitioncritical value σcrit = n + 1

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitraryLiu, W., Zhang Singular values for spiked products ofcomplex Ginibre matrices

λ1 BBP phase transitioncritical value σcrit = n + 1

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitrary¶

λ1 BBP phase transitioncritical value σcrit = n + 1

¶Liu, W., Zhang Singular values for spiked products of complex Ginibre matrices

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitrary¶

λ1 BBP phase transition

critical value σcrit = n + 1

¶Liu, W., Zhang Singular values for spiked products of complex Ginibre matrices

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Spiked Products of Random Matrices: Phase Transitions

H = Σ1/2Hn · · ·H2H1

natural generalization E[HH†

]∝ Σ = diag (σ1, . . . , σm) – spikes

n = 1 – Baik-Ben Arous-Péché [2005] Phase transition of the largesteigenvalue for nonnull complex sample covariance matrices, Ann.Probab.

λ1 from Tracy-Widom to Gaussian (BBP phase transition)critical value σcrit = 2

n arbitrary¶

λ1 BBP phase transitioncritical value σcrit = n + 1

¶Liu, W., Zhang Singular values for spiked products of complex Ginibre matrices

Lu Wei Random Matrix Theory and Large Complex Systems 8 / 19

Product of Random Matrices

Phase Transitions

50

40

30

λ1

20

10

020

15

10

σ1

5

0.1

0.2

0.3

0

0.4

dens

ity o

f λ

1

MIMO radar detection; community detection,. . .

Lu Wei Random Matrix Theory and Large Complex Systems 9 / 19

Product of Random Matrices

Phase Transitions

50

40

30

λ1

20

10

020

15

10

σ1

5

0.1

0.2

0.3

0

0.4

dens

ity o

f λ

1

MIMO radar detection‖;

community detection,. . .

‖W., Zheng, Hero, Tarokh Scaling laws and phase transitions for target detection in MIMO radar, ITW’16

Lu Wei Random Matrix Theory and Large Complex Systems 9 / 19

Product of Random Matrices

Phase Transitions

50

40

30

λ1

20

10

020

15

10

σ1

5

0.1

0.2

0.3

0

0.4

dens

ity o

f λ

1

MIMO radar detection‖; community detection,. . .

‖W., Zheng, Hero, Tarokh Scaling laws and phase transitions for target detection in MIMO radar, ITW’16

Lu Wei Random Matrix Theory and Large Complex Systems 9 / 19

Other Large Complex Systems

Applications to Other Large Complex Systems

Lu Wei Random Matrix Theory and Large Complex Systems 10 / 19

Signal Processing

Signal Processing

joint works with Dharmawansa, Liang, McKay, Tirkkonen

Lu Wei Random Matrix Theory and Large Complex Systems 11 / 19

Signal Processing

Signal Detection

cognitive radio - a solution to spectrum underutilization problem bydynamic spectrum access

unlicensed users are allowed to opportunistically use the frequencybands that are not heavily occupied by licensed users

awareness of spectrum usage information via spectrum sensing

ym×1

= Hm×p

x + w

Ym×N

= (y1, y2, . . . , yN) =⇒{H0 : noise

H1 : signal + noise

R = YY† data sample covariance; E noise sample covariance

Lu Wei Random Matrix Theory and Large Complex Systems 12 / 19

Signal Processing

Signal Detection

cognitive radio - a solution to spectrum underutilization problem bydynamic spectrum access

unlicensed users are allowed to opportunistically use the frequencybands that are not heavily occupied by licensed users

awareness of spectrum usage information via spectrum sensing

ym×1

= Hm×p

x + w

Ym×N

= (y1, y2, . . . , yN) =⇒{H0 : noise

H1 : signal + noise

R = YY† data sample covariance; E noise sample covariance

Lu Wei Random Matrix Theory and Large Complex Systems 12 / 19

Signal Processing

Signal Detection

cognitive radio - a solution to spectrum underutilization problem bydynamic spectrum access

unlicensed users are allowed to opportunistically use the frequencybands that are not heavily occupied by licensed users

awareness of spectrum usage information via spectrum sensing

ym×1

= Hm×p

x + w

Ym×N

= (y1, y2, . . . , yN) =⇒{H0 : noise

H1 : signal + noise

R = YY† data sample covariance; E noise sample covariance

Lu Wei Random Matrix Theory and Large Complex Systems 12 / 19

Signal Processing

Signal Detection

cognitive radio - a solution to spectrum underutilization problem bydynamic spectrum access

unlicensed users are allowed to opportunistically use the frequencybands that are not heavily occupied by licensed users

awareness of spectrum usage information via spectrum sensing

ym×1

= Hm×p

x + w

Ym×N

= (y1, y2, . . . , yN) =⇒{H0 : noise

H1 : signal + noise

R = YY† data sample covariance; E noise sample covariance

Lu Wei Random Matrix Theory and Large Complex Systems 12 / 19

Signal Processing

Signal Detection

cognitive radio - a solution to spectrum underutilization problem bydynamic spectrum access

unlicensed users are allowed to opportunistically use the frequencybands that are not heavily occupied by licensed users

awareness of spectrum usage information via spectrum sensing

ym×1

= Hm×p

x + w

Ym×N

= (y1, y2, . . . , yN) =⇒{H0 : noise

H1 : signal + noise

R = YY† data sample covariance; E noise sample covariance

Lu Wei Random Matrix Theory and Large Complex Systems 12 / 19

Signal Processing

Signal Detection

cognitive radio - a solution to spectrum underutilization problem bydynamic spectrum access

unlicensed users are allowed to opportunistically use the frequencybands that are not heavily occupied by licensed users

awareness of spectrum usage information via spectrum sensing

ym×1

= Hm×p

x + w

Ym×N

= (y1, y2, . . . , yN) =⇒{H0 : noise

H1 : signal + noise

R = YY† data sample covariance; E noise sample covariance

Lu Wei Random Matrix Theory and Large Complex Systems 12 / 19

Signal Processing

Signal Detection

p > 1 but unknown∗

TST =det (R)(1m tr(R)

)m

low signal-to-noise ratio†

TJ =tr(R2)

tr2(R)

unknown noise covariance‡

TW =det (E)

det (R + E)

∗W., Tirkkonen [2012] Spectrum sensing in the presence of multiple primary users, IEEE Trans. Commun.

†W., Dharmawansa, Tirkkonen [2013] Multiple primary user spectrum sensing in the low SNR regime, IEEE Trans.Commun.‡W., Tirkkonen, Liang [2014] Multi-source signal detection with arbitrary noise covariance, IEEE Trans. Signal Process.

Lu Wei Random Matrix Theory and Large Complex Systems 13 / 19

Signal Processing

Signal Detection

p > 1 but unknown∗

TST =det (R)(1m tr(R)

)m

low signal-to-noise ratio†

TJ =tr(R2)

tr2(R)

unknown noise covariance‡

TW =det (E)

det (R + E)

∗W., Tirkkonen [2012] Spectrum sensing in the presence of multiple primary users, IEEE Trans. Commun.†W., Dharmawansa, Tirkkonen [2013] Multiple primary user spectrum sensing in the low SNR regime, IEEE Trans.

Commun.

‡W., Tirkkonen, Liang [2014] Multi-source signal detection with arbitrary noise covariance, IEEE Trans. Signal Process.

Lu Wei Random Matrix Theory and Large Complex Systems 13 / 19

Signal Processing

Signal Detection

p > 1 but unknown∗

TST =det (R)(1m tr(R)

)m

low signal-to-noise ratio†

TJ =tr(R2)

tr2(R)

unknown noise covariance‡

TW =det (E)

det (R + E)

∗W., Tirkkonen [2012] Spectrum sensing in the presence of multiple primary users, IEEE Trans. Commun.†W., Dharmawansa, Tirkkonen [2013] Multiple primary user spectrum sensing in the low SNR regime, IEEE Trans.

Commun.‡W., Tirkkonen, Liang [2014] Multi-source signal detection with arbitrary noise covariance, IEEE Trans. Signal Process.

Lu Wei Random Matrix Theory and Large Complex Systems 13 / 19

Coding Theory

Coding Theory

joint works with Corander, Pitaval, Tirkkonen

Lu Wei Random Matrix Theory and Large Complex Systems 14 / 19

Coding Theory

Coding Theory

fundamental issue: cardinality and minimum distance tradeoff

a code with cardinality |C|, C ={

G1,G2, . . . ,G|C|}⊂ G

minimum distance, r = min{||Gi − Gj ||

∣∣ Gi ,Gj ∈ C, i 6= j}

1µ (B (r))︸ ︷︷ ︸

Gilbert-Varshamov bound

≤ |C| ≤ 1µ (B (r/2))︸ ︷︷ ︸

Hamming bound

metric ball, B (r) ={

G ∈ G∣∣ d(

G,G′)≤ r

}, G

′ ∈ Gvolume of metric ball, µ (B (r)) =

∫d(G,G′)≤r f (G) dG

Lu Wei Random Matrix Theory and Large Complex Systems 15 / 19

Coding Theory

Coding Theory

fundamental issue: cardinality and minimum distance tradeoff

a code with cardinality |C|, C ={

G1,G2, . . . ,G|C|}⊂ G

minimum distance, r = min{||Gi − Gj ||

∣∣ Gi ,Gj ∈ C, i 6= j}

1µ (B (r))︸ ︷︷ ︸

Gilbert-Varshamov bound

≤ |C| ≤ 1µ (B (r/2))︸ ︷︷ ︸

Hamming bound

metric ball, B (r) ={

G ∈ G∣∣ d(

G,G′)≤ r

}, G

′ ∈ Gvolume of metric ball, µ (B (r)) =

∫d(G,G′)≤r f (G) dG

Lu Wei Random Matrix Theory and Large Complex Systems 15 / 19

Coding Theory

Coding Theory

fundamental issue: cardinality and minimum distance tradeoff

a code with cardinality |C|, C ={

G1,G2, . . . ,G|C|}⊂ G

minimum distance, r = min{||Gi − Gj ||

∣∣ Gi ,Gj ∈ C, i 6= j}

1µ (B (r))︸ ︷︷ ︸

Gilbert-Varshamov bound

≤ |C| ≤ 1µ (B (r/2))︸ ︷︷ ︸

Hamming bound

metric ball, B (r) ={

G ∈ G∣∣ d(

G,G′)≤ r

}, G

′ ∈ Gvolume of metric ball, µ (B (r)) =

∫d(G,G′)≤r f (G) dG

Lu Wei Random Matrix Theory and Large Complex Systems 15 / 19

Coding Theory

Coding Theory

fundamental issue: cardinality and minimum distance tradeoff

a code with cardinality |C|, C ={

G1,G2, . . . ,G|C|}⊂ G

minimum distance, r = min{||Gi − Gj ||

∣∣ Gi ,Gj ∈ C, i 6= j}

1µ (B (r))︸ ︷︷ ︸

Gilbert-Varshamov bound

≤ |C| ≤ 1µ (B (r/2))︸ ︷︷ ︸

Hamming bound

metric ball, B (r) ={

G ∈ G∣∣ d(

G,G′)≤ r

}, G

′ ∈ Gvolume of metric ball, µ (B (r)) =

∫d(G,G′)≤r f (G) dG

Lu Wei Random Matrix Theory and Large Complex Systems 15 / 19

Coding Theory

Coding Theory

fundamental issue: cardinality and minimum distance tradeoff

a code with cardinality |C|, C ={

G1,G2, . . . ,G|C|}⊂ G

minimum distance, r = min{||Gi − Gj ||

∣∣ Gi ,Gj ∈ C, i 6= j}

1µ (B (r))︸ ︷︷ ︸

Gilbert-Varshamov bound

≤ |C| ≤ 1µ (B (r/2))︸ ︷︷ ︸

Hamming bound

metric ball, B (r) ={

G ∈ G∣∣ d(

G,G′)≤ r

}, G

′ ∈ G

volume of metric ball, µ (B (r)) =∫

d(G,G′)≤r f (G) dG

Lu Wei Random Matrix Theory and Large Complex Systems 15 / 19

Coding Theory

Coding Theory

fundamental issue: cardinality and minimum distance tradeoff

a code with cardinality |C|, C ={

G1,G2, . . . ,G|C|}⊂ G

minimum distance, r = min{||Gi − Gj ||

∣∣ Gi ,Gj ∈ C, i 6= j}

1µ (B (r))︸ ︷︷ ︸

Gilbert-Varshamov bound

≤ |C| ≤ 1µ (B (r/2))︸ ︷︷ ︸

Hamming bound

metric ball, B (r) ={

G ∈ G∣∣ d(

G,G′)≤ r

}, G

′ ∈ Gvolume of metric ball, µ (B (r)) =

∫d(G,G′)≤r f (G) dG

Lu Wei Random Matrix Theory and Large Complex Systems 15 / 19

Coding Theory

Volume of Metric Balls

Lu Wei Random Matrix Theory and Large Complex Systems 16 / 19

Coding Theory

Unitary Group

µ (B (r)) ∝∫· · ·∫||U−In||F≤r

∏1≤j<k≤n

∣∣∣eıθj − eıθk∣∣∣2 n∏

i=1

dθi

Han-Rosenthal [2006] Unitary space-time constellation analysis: anupper bound for the diversity, IEEE Trans. Inf. Theory

limiting behaviorW., Pitaval, Corander, Tirkkonen From random matrixtheory to coding theory: Volume of a metric ball in unitary group,IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259 as n→∞

µ (B (r)) ' 12

erf(n)− 12

erf

(n − r2

2

)

super-exponential rate of convergence O (n−cn)CLT of linear statistics of unitary group

Lu Wei Random Matrix Theory and Large Complex Systems 17 / 19

Coding Theory

Unitary Group

µ (B (r)) ∝∫· · ·∫||U−In||F≤r

∏1≤j<k≤n

∣∣∣eıθj − eıθk∣∣∣2 n∏

i=1

dθi

Han-Rosenthal [2006] Unitary space-time constellation analysis: anupper bound for the diversity, IEEE Trans. Inf. Theory

limiting behaviorW., Pitaval, Corander, Tirkkonen From random matrixtheory to coding theory: Volume of a metric ball in unitary group,IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259 as n→∞

µ (B (r)) ' 12

erf(n)− 12

erf

(n − r2

2

)

super-exponential rate of convergence O (n−cn)CLT of linear statistics of unitary group

Lu Wei Random Matrix Theory and Large Complex Systems 17 / 19

Coding Theory

Unitary Group

µ (B (r)) ∝∫· · ·∫||U−In||F≤r

∏1≤j<k≤n

∣∣∣eıθj − eıθk∣∣∣2 n∏

i=1

dθi

Han-Rosenthal [2006] Unitary space-time constellation analysis: anupper bound for the diversity, IEEE Trans. Inf. Theory

limiting behaviorW., Pitaval, Corander, Tirkkonen From random matrixtheory to coding theory: Volume of a metric ball in unitary group,IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259 as n→∞

µ (B (r)) ' 12

erf(n)− 12

erf

(n − r2

2

)

super-exponential rate of convergence O (n−cn)CLT of linear statistics of unitary group

Lu Wei Random Matrix Theory and Large Complex Systems 17 / 19

Coding Theory

Unitary Group

µ (B (r)) ∝∫· · ·∫||U−In||F≤r

∏1≤j<k≤n

∣∣∣eıθj − eıθk∣∣∣2 n∏

i=1

dθi

Han-Rosenthal [2006] Unitary space-time constellation analysis: anupper bound for the diversity, IEEE Trans. Inf. Theory

limiting behavior∗ as n→∞

µ (B (r)) ' 12

erf(n)− 12

erf

(n − r2

2

)

super-exponential rate of convergence O (n−cn)CLT of linear statistics of unitary group

∗W., Pitaval, Corander, Tirkkonen From random matrix theory to coding theory: Volume of a metric ball in unitary group,IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259

Lu Wei Random Matrix Theory and Large Complex Systems 17 / 19

Coding Theory

Unitary Group

µ (B (r)) ∝∫· · ·∫||U−In||F≤r

∏1≤j<k≤n

∣∣∣eıθj − eıθk∣∣∣2 n∏

i=1

dθi

Han-Rosenthal [2006] Unitary space-time constellation analysis: anupper bound for the diversity, IEEE Trans. Inf. Theory

limiting behavior∗ as n→∞

µ (B (r)) ' 12

erf(n)− 12

erf

(n − r2

2

)

super-exponential rate of convergence O (n−cn)

CLT of linear statistics of unitary group

∗W., Pitaval, Corander, Tirkkonen From random matrix theory to coding theory: Volume of a metric ball in unitary group,IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259

Lu Wei Random Matrix Theory and Large Complex Systems 17 / 19

Coding Theory

Unitary Group

µ (B (r)) ∝∫· · ·∫||U−In||F≤r

∏1≤j<k≤n

∣∣∣eıθj − eıθk∣∣∣2 n∏

i=1

dθi

Han-Rosenthal [2006] Unitary space-time constellation analysis: anupper bound for the diversity, IEEE Trans. Inf. Theory

limiting behavior∗ as n→∞

µ (B (r)) ' 12

erf(n)− 12

erf

(n − r2

2

)

super-exponential rate of convergence O (n−cn)CLT of linear statistics of unitary group

∗W., Pitaval, Corander, Tirkkonen From random matrix theory to coding theory: Volume of a metric ball in unitary group,IEEE Trans. Inf. Theory, submitted, arXiv:1506.07259

Lu Wei Random Matrix Theory and Large Complex Systems 17 / 19

Coding Theory

Grassmann Manifold

µ (B (r)) ∝∫· · ·∫

0≤xi≤1∑pi=1 xi≤r

∏1≤j<k≤p

(xj − xk )2p∏

i=1

xn−p−qi (1− xi)

q−p dxi

Barg-Nogin [2002] fixed p, q, large n; Dai et al. [2008] r ≤ 1

limiting behavior as n, p, q →∞

µ (B (r)) ' 12

erf(

b√2a

)− 1

2erf

(b − r2√

2a

)

CLT of linear statistics of Jacobi ensemblemoments from Painlevé V

Lu Wei Random Matrix Theory and Large Complex Systems 18 / 19

Coding Theory

Grassmann Manifold

µ (B (r)) ∝∫· · ·∫

0≤xi≤1∑pi=1 xi≤r

∏1≤j<k≤p

(xj − xk )2p∏

i=1

xn−p−qi (1− xi)

q−p dxi

Barg-Nogin [2002] fixed p, q, large n; Dai et al. [2008] r ≤ 1

limiting behavior as n, p, q →∞

µ (B (r)) ' 12

erf(

b√2a

)− 1

2erf

(b − r2√

2a

)

CLT of linear statistics of Jacobi ensemblemoments from Painlevé V

Lu Wei Random Matrix Theory and Large Complex Systems 18 / 19

Coding Theory

Grassmann Manifold

µ (B (r)) ∝∫· · ·∫

0≤xi≤1∑pi=1 xi≤r

∏1≤j<k≤p

(xj − xk )2p∏

i=1

xn−p−qi (1− xi)

q−p dxi

Barg-Nogin [2002] fixed p, q, large n; Dai et al. [2008] r ≤ 1

limiting behavior as n, p, q →∞

µ (B (r)) ' 12

erf(

b√2a

)− 1

2erf

(b − r2√

2a

)

CLT of linear statistics of Jacobi ensemblemoments from Painlevé V

Lu Wei Random Matrix Theory and Large Complex Systems 18 / 19

Coding Theory

Grassmann Manifold

µ (B (r)) ∝∫· · ·∫

0≤xi≤1∑pi=1 xi≤r

∏1≤j<k≤p

(xj − xk )2p∏

i=1

xn−p−qi (1− xi)

q−p dxi

Barg-Nogin [2002] fixed p, q, large n; Dai et al. [2008] r ≤ 1

limiting behavior† as n, p, q →∞

µ (B (r)) ' 12

erf(

b√2a

)− 1

2erf

(b − r2√

2a

)

CLT of linear statistics of Jacobi ensemblemoments from Painlevé V

†Pitaval, W., Tirkkonen, Corander Volume of metric balls in high-dimensional complex Grassmann manifolds, IEEETrans. Inf. Theory, submitted, arXiv:1508.00256

Lu Wei Random Matrix Theory and Large Complex Systems 18 / 19

Coding Theory

Grassmann Manifold

µ (B (r)) ∝∫· · ·∫

0≤xi≤1∑pi=1 xi≤r

∏1≤j<k≤p

(xj − xk )2p∏

i=1

xn−p−qi (1− xi)

q−p dxi

Barg-Nogin [2002] fixed p, q, large n; Dai et al. [2008] r ≤ 1

limiting behavior† as n, p, q →∞

µ (B (r)) ' 12

erf(

b√2a

)− 1

2erf

(b − r2√

2a

)

CLT of linear statistics of Jacobi ensemble

moments from Painlevé V

†Pitaval, W., Tirkkonen, Corander Volume of metric balls in high-dimensional complex Grassmann manifolds, IEEETrans. Inf. Theory, submitted, arXiv:1508.00256

Lu Wei Random Matrix Theory and Large Complex Systems 18 / 19

Coding Theory

Grassmann Manifold

µ (B (r)) ∝∫· · ·∫

0≤xi≤1∑pi=1 xi≤r

∏1≤j<k≤p

(xj − xk )2p∏

i=1

xn−p−qi (1− xi)

q−p dxi

Barg-Nogin [2002] fixed p, q, large n; Dai et al. [2008] r ≤ 1

limiting behavior† as n, p, q →∞

µ (B (r)) ' 12

erf(

b√2a

)− 1

2erf

(b − r2√

2a

)

CLT of linear statistics of Jacobi ensemblemoments from Painlevé V

†Pitaval, W., Tirkkonen, Corander Volume of metric balls in high-dimensional complex Grassmann manifolds, IEEETrans. Inf. Theory, submitted, arXiv:1508.00256

Lu Wei Random Matrix Theory and Large Complex Systems 18 / 19

Conclusion

Large Complex Systems

Random Matrix Theory

Wireless Communications

Statistical Physics

Information Theory

Signal Processing

Machine Learning

Data Sciences

?

Lu Wei Random Matrix Theory and Large Complex Systems 19 / 19