Industrial Building Ppt

Post on 31-Dec-2015

436 views 2 download

Tags:

description

Mini Project

Transcript of Industrial Building Ppt

MINI PROJECT-II

• ANALYSIS AND DESIGN OF AN INDUSTRIAL BUILDING

SUBMITTED BY

D. HIMA BINDU

06DA009

GIVEN DATA

• Length of the building = 42 m.• Span of the truss = 16 m.• Spacing of truss = 6 m.• Pitch of roof = 1 in 5.• Basic wind pressure = 2 KN/m².• Snow fall = NIL.• Height of eaves above GL = 8m.• Horizontal force due to overhead crane = 25KN.• Height of the rails above base = 5m.• SBC of soil =250 KN/m².

MAJOR COMPONENTS OF AN INDUSTRIAL BUILDING

• 1.Roof trusses• 2.Gantry girder• 3.Side rails (or grits) with claddings• 4.Gable rafter• 5.Gable columns• 6.Rafter bracing• 7.Vertical bracing in longitudinal side• 8.Gable wind girder at eave level• 9.Main columns• 10.Column brackets

COMPOUND FINK TRUSS

16.00m1.44m

1.44m

1.44m

1.44m

1.44m

1.44m

8.62m

Load 1X

Y

Z

DIMENSIONS OF THE TRUSS

• Span of the knee braced roof truss = 16.0 m. • Rise of roof truss = 1/5 x span = 1/5 x 16= 3.2 m.• Let θ be the slope of the roof truss, then tan θ = 3.20

8.0 θ = 21.8°

• Length of the sloping side of the roof = √ (8.02 + 3.22) = 8.62 m.

• Sloping side is divided into 6 PANELS of equal length = 8.62/6 = 1.44m.

DESIGN OF CHANNEL SECTION PURLIN

• Spacing of Purlins = 1.44 m

• Span of Purlins = 6.0 m

• Load calculation:Dead load W1 As per IS 875 part ILive load W2 As per IS 875 part IIWind load W3 As per IS 875 part III

• Combination of loads

• 1) Dead load

• 2) Dead load + Live load

• 3) Dead load + Wind load –(critical case)

LOAD ACTING ON PURLIN

Provide ISMC 150@ 164 N/m @ distance of 1.44m as purlin section

W3

W2 W1

21.8°

ANALYSIS OF ROOF TRUSS

1. Dead load

-1.420 kN

-2.830 kN

-2.830 kN

-2.830 kN

-2.830 kN

-2.830 kN

-2.830 kN

-1.420 kN

-2.830 kN

-2.830 kN

-2.830 kN

-2.830 kN

-2.830 kN

Load 1X

Y

Z

2.Live load

-1.480 kN

-2.960 kN

-2.960 kN

-2.960 kN

-2.960 kN

-2.960 kN

-2.960 kN

-1.480 kN

-2.960 kN

-2.960 kN

-2.960 kN

-2.960 kN

-2.960 kN

Load 2X

Y

Z

3.Wind load

-3.840 kN

9.600 kN

-7.680 kN

19.210 kN

-7.680 kN

19.210 kN

-7.680 kN

19.210 kN

-7.680 kN

19.210 kN

-7.680 kN

19.210 kN

-3.840 kN

9.600 kN

3.520 kN

8.800 kN

3.520 kN

8.800 kN

7.040 kN

17.600 kN

7.040 kN

17.600 kN

7.040 kN

17.600 kN

7.040 kN

17.600 kN

7.040 kN

17.600 kN

Load 3X

Y

Z

LOAD COMBINATION

• Dead load + live load

-1.420 kN-1.480 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-1.420 kN-1.480 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

-2.830 kN-2.960 kN

Load 4X

Y

Z

• Dead load + wind load

-1.420 kN-3.840 kN

9.600 kN

-2.830 kN-7.680 kN

19.210 kN

-2.830 kN-7.680 kN

19.210 kN

-2.830 kN-7.680 kN

19.210 kN

-2.830 kN-7.680 kN

19.210 kN

-2.830 kN-7.680 kN

19.210 kN

-2.830 kN-3.840 kN

9.600 kN

3.520 kN

8.800 kN

-1.420 kN3.520 kN

8.800 kN

-2.830 kN7.040 kN

17.600 kN

-2.830 kN7.040 kN

17.600 kN

-2.830 kN7.040 kN

17.600 kN

-2.830 kN7.040 kN

17.600 kN

-2.830 kN7.040 kN

17.600 kN

Load 5X

Y

Z

Design of tension member• Max tensile force member = -270.9KN (DL + WL)

• As per IS 800-1984 section 4 clause 4.2.1.2• For 2- ISA connected to the same side of the gusset plate• A1 = Effective c/s area of the connected leg• = (b-nd-t/2)t• A2 = gross c/s area of unconnected leg• = (b-t/2)t• K = 5 A1 /(5 A1+ A2)• Net eff cross area = A1 + A2 k• Psafe = at x A = 0 .6 fy x A > 270.9 KN

• provide 2 - ISA 130 X 130 X 12 mm @468 N/m

Design of compression member

• Max Compressive force member = 250.013KN (DL + WL)

• λ = leff / r min

• from IS 800 1984 table 5.1 permissible stress in axial compression σac

• Psaf = σac x Area > 250.013 KN

• hence safe ok

• provide ISA 70 X 70 X 8 @456N/m

GABLE WIND GIRDER

26.88 KN

53.76 KN

53.76 kN 53.76 kN 26.88 kN

107.5KN 107.5KN

• Design of critical tension member:

• Provide 2- ISA 70 x 70 x 10 mm @ 200 N/m

• Design of a critical compression member:

• Provide 2- ISA 100 x 100 x 10 mm @ 298 N/m

DESIGN OF COLUMNS SUPPORTING THE ROOF TRUSSES

• Case C

124.128 kN133.780 kN

2.800 kN

-46.097 kN

115.500 kN

7.200 kN

15.430 kN4.410 kN

105.640 kN

42.250 kN

9.800 kN

25.200 kN

Load 1X

Y

Z

Left side knee brace

2.8 KN

7.2KN

4.14KN 30.48KN

60.75

60.75

F1

30.48KN2.8 KN

7.2KN

2.8 KN

4.14KN

AFD SFD BMD

123.12

62.32

30.48KN

26.0

41.91

52.16

97.5

right side knee brace

9.8

25.2

30.48 15.43

30.62

30.62.75

F2

15.43

30.48+9.8

25.2

9.8 KN

9.8

AFD SFD BMD

97.69

111.31KN

30.48KN

15.05

32.77KN

30.1

55.3kNm

CASE D

124.128 kN133.780 kN

16.750 kN

-46.097 kN

115.500 kN

43.200 kN

-6.613 kN26.450 kN

105.640 kN

42.250 kN

-4.190 kN

-10.800 kN

Load 1X

Y

Z

left side knee brace

16.75

43.2

26.45 33.76

24.3

24.3

F3

33.78+16.75

16.75

43.2

16.75

26.45

AFD SFD BMD

33.76

98.83

33.76

7.31

60.19

1.624

140

right side knee brace

4.19

10.8

33.786.613

115

115

F4

6.613

33.78

-4.19

10.8

4.19

4.19

AFD SFD BMD

97.71

115KN

33.78

40.39

63.81KN

80.78

148.42kNm

• Max BM = 148.42 KN-m• Max tension = 115 KN• LOADS• Load on each column due to DL• Load on each column due toLL • Toal load

• Net load • Max BM

• from IS-800 1984 table 5.1λ = leff / rmin

• Permissible stress in axial compression σac • Based on T/t

D1/t d/t

• From table 6.1 B of IS 800-1984 • Permissible stress in bending compression bc

• σac cal = P/A bc cal =M/Zxx

ac(cal) / ac, + bc (cal ) / bcx Cm/1- ac(cal) /.6fCC ≤ 1

• provide ISHB 350 @ 674 N/m as column

DESIGN OF GABLE RAFTER

8.62m 8.62m

8.00m

16.00m

3.20m

X

Y

Z

• Dead Load

• Live load

• Wind Load

Provide 2-ISA 80x80x10 @ 14 kg/m for gable rafter.

DESIGN OF SIDE RAILS

• Provide side rails of ISA 110x110x12@ 19.6 kg/m @ 1.6m spacing.

SIDE RAILS @ 1.6 m C/C

DESIGN OF GABLE COLUMN

• Provide Gable column ISHB 250 @ 510N /m

GABLE COLUMN

VERTICAL SIDE BRACING

VERTICAL SIDE BRACING

Horizontal force due to gantry girder= 25 KNReaction from the gable wind girder =107.52 KNie,Force in member cf (Eaves strut) = 107.52 kNForce in member ai

Vertical Side Bracing

a g

b

c

d

e

f

h

i

8m

5m

3m

• Design of compression member

• Provide 2-150 x 150 x 15 mm @336 N/m

• design of tension member:

• Provide 2-100 x 100 x 8 mm @ 268 N/m

DESIGN OF RAFTER BRACING

VERTICAL SIDE BRACING

RAFTER BRACING

The rafter bracing is critical in tension and hence designed for tension and checked for compression. • Provide ISA 70 x 70 x 10 @ 102 N/m

DESIGN OF GRILLAGE FOUNDATION

• Area of footing required • Check for combined stress• bearing pressure on soil fb = P/A ± M/Z • Design of upper tier • The beam are designed for given load and moment • Providing 4 beams in upper tier • Provide ISLB 300 @ 481N/m• Design of beam in lower tier• Provide ISLB 225 @ 235 N/m as beams in lower tier