IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Post on 11-May-2015

1.041 views 5 download

Tags:

description

IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Transcript of IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

http://lawrencekok.blogspot.com

Prepared by Lawrence Kok

Tutorial on Mass Spectrometry, Isotopes Identification and Option A for SL/HL.

Relative Atomic Mass Isotopes are present

Weighted average mass- due to presence of isotopes

Relative Isotopic Mass, (Ar) of an element:•Relative isotopic mass = Average mass of one atom of element

1/12 x mass of one carbon-12• Relative isotopic mass, carbon = 12.01

RAM = 12.01Relative Abundance 98.9% 1.07%

13

Why RAM is not a whole number?

Relative Isotopic Mass:= (Mass 12C x % Abundance) + (Mass 13C x % Abundance) = (12 x 98.9/100) + (13 x 1.07/100) = 12.01

12

http://www.tutorvista.com/content/science/science-i/atoms-molecules/atom.php

Relative Atomic Mass Isotopes are present

Weighted average mass- due to presence of isotopes

Relative Isotopic Mass, (Ar) of an element:•Relative isotopic mass = Average mass of one atom of element

1/12 x mass of one carbon-12• Relative isotopic mass, carbon = 12.01

Video on Isotopes

RAM = 12.01Relative Abundance 98.9% 1.07%

13

Why RAM is not a whole number?

Relative Isotopic Mass:= (Mass 12C x % Abundance) + (Mass 13C x % Abundance) = (12 x 98.9/100) + (13 x 1.07/100) = 12.01

Video on weighted average Weighted average calculation

Video on Isotopes

RAM calculation

12

Mg - 3 Isotopes

24 Mg – (100/127.2) x 100% - 78.6%25 Mg – (12.8/127.2) x 100% - 10.0%26 Mg – (14.4/127.2) x 100% - 11.3%

Relative Isotopic Mass:= (Mass 24Mg x % Abundance) + (Mass 25Mg x % Abundance) + (Mass 26Mg x % Abundance)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Relative Abundance % Abundance

Convert relative abundance to % abundance

Relative Isotopic Mass

Mg - 3 Isotopes

24 Mg – (100/127.2) x 100% - 78.6%25 Mg – (12.8/127.2) x 100% - 10.0%26 Mg – (14.4/127.2) x 100% - 11.3%

Relative Isotopic Mass:= (Mass 24Mg x % Abundance) + (Mass 25Mg x % Abundance) + (Mass 26Mg x % Abundance)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Relative Abundance % Abundance

Pb - 4 Isotopes

204Pb – (0.2/10) x 100% - 2%206Pb – (2.4/10) x 100% - 24%207Pb – (2.2/10) x 100% - 22%208Pb – (5.2/10) x 100% - 52% Relative Isotopic Mass

= (Mass 204Pb x % Abundance) + (Mass 206Pb x % Abundance) + (Mass 207Pb x % Abundance) + (Mass 208Pb x % Abundance)= (204 x 2/100) + (206 x 24/100) + (207 x 22/100) + (208 x 52/100) = 207.20

Convert relative abundance to % abundance

Convert relative abundance to % abundance

Relative Abundance % Abundance

Relative Isotopic Mass

Isotopes

Stable Isotopes Unstable Isotopes

Unstable Isotopes – emits radiation

RADIOISOTOPES

Emit radiation form unstable isotope

Radioactive isotopes

Half-life

Uranium 238 4.5 x 109

Carbon-14 5.7 x 103

Radium-226 1.6 x 103

Strontium-90 28 years

Iodine-131 8.1 days

Bismuth-214 19.7 minutes

Polonium-214 1.5 x 10-4

Isotopes

Stable Isotopes Unstable Isotopes

Unstable Isotopes – emits radiation

RADIOISOTOPES

Radioisotopes •Half-life – time taken for conc/amt isotope to fall to half of its original value. •Half life decay – always constant

Shorter half-life More unstable, decay fast

Long half-life More stable, decay slowly

www.sciencelearn.org.nz

Emit radiation form unstable isotope

Half-life

Radioactive isotopes

Half-life

Uranium 238 4.5 x 109

Carbon-14 5.7 x 103

Radium-226 1.6 x 103

Strontium-90 28 years

Iodine-131 8.1 days

Bismuth-214 19.7 minutes

Polonium-214 1.5 x 10-4

Isotopes

Stable Isotopes Unstable Isotopes

Unstable Isotopes – emits radiation

RADIOISOTOPES

Simulation isotope 12C, 13C, 14C

Radioisotopes •Half-life – time taken for conc/amt isotope to fall to half of its original value. •Half life decay – always constant

Shorter half-life More unstable, decay fast

Long half-life More stable, decay slowly

www.sciencelearn.org.nz

Emit radiation form unstable isotope

Simulation isotope 1H, 2H, 3H

Video on Half life

Simulation half life C-14/uranuim

Half-life

Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -14

Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -14

Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Simulation C-14 (Half life)At 100% (Starting)

Simulation C-14 (Half life)At 50% (Starting)

Click to view simulation

How Radiocarbon dating works?

Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -14

Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Video on C-14 Carbon Dating Video on C-14 Carbon Dating/Fossil Video on C-14 Half life Carbon Dating

Simulation C-14 (Half life)At 100% (Starting)

Simulation C-14 (Half life)At 50% (Starting)

Video on Radiocarbon dating

Click to view simulation

How Radiocarbon dating works?

Carbon – 3 Isotopes Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -12 Carbon -14Carbon -13

Abundance – 99% (Stable) Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive)

Carbon – 3 Isotopes Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

ConclusionRatio C14/C12 is constant is organism alive

Ratio C14/C12 drop organism die

Uses•Age dead organic material/fossil contain Carbon element•Max age limit is 60,000 years old.

Carbon -12 Carbon -14Carbon -13

Abundance – 99% (Stable) Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Carbon – 3 Isotopes Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

ConclusionRatio C14/C12 is constant is organism alive

Ratio C14/C12 drop organism die

Uses•Age dead organic material/fossil contain Carbon element•Max age limit is 60,000 years old.

Carbon -12 Carbon -14Carbon -13

Abundance – 99% (Stable) Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

How it is form?

Mass Spectrometer

Uses mass spectrometer

Relative atomic mass of an element

Relative Molecular mass of a molecule

CO2

Mass Spectrometer

Uses mass spectrometer

Presence of isotopes and its abundance

Relative atomic mass of an element

Relative Molecular mass of a molecule

CO2

Mass Spectrometer

Uses mass spectrometer

Presence of isotopes and its abundance

Relative atomic mass of an element

Relative Molecular mass of a molecule

Structure of organic compound

Distinguish between structural isomers

CH3CH2CH2OH OH |CH3CHCH3

CH3 |CH3C-CH3

| CH3

CO2

structural formula

Organic structure determination

Mass Spectrometer

Parts of Mass Spectrometer

Sample injection

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Mass Spectrometer

Parts of Mass Spectrometer

Sample injection

Vaporization Chamber • Sample heat to vapour state

Ionization Chamber • Molecule bombard with electrons form positive ions

Accelerator Chamber• M+ ions accelerated by Electric field

Deflector • M+ ions deflected by magnetic field

Detector • Convert abundance of M+

ions to electrical current.• M+ ions neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

2

1

4

5

Mass Spectrometer

Parts of Mass Spectrometer

Sample injection

Vaporization Chamber • Sample heat to vapour state

Ionization Chamber • Molecule bombard with electrons form positive ions

Accelerator Chamber• M+ ions accelerated by Electric field

Deflector • M+ ions deflected by magnetic field

Detector • Convert abundance of M+

ions to electrical current.• M+ ions neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Sample X bombarded by electron • Form positive M+ ion• Accelerated (Electric Field)• Deflected (Magnetic Field) and Detected X + e- → X+ + 2e-

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

2

1

3 4

Click here notes from chemguide Detail notes from chem msu

5

Mass Spectrometer

Parts of Mass Spectrometer

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Click here for simulation

Mass Spectrometer

Parts of Mass Spectrometer

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Click here for simulation VaporizationInjection/ vaporization of sampleliquid state gaseous

Ionization•Form radical cations, M+

Acceleration• M+ ions accelerated by Electric field

Deflection• M+ ion deflected by magnetic field

2

3 4

15 Detector

• Convert abundance of M+ ions to electrical current.• M+ ion neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Mass Spectrometer

Parts of Mass Spectrometer

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Click here for simulation VaporizationInjection/ vaporization of sampleliquid state gaseous

Ionization•Form radical cations, M+

Acceleration• M+ ions accelerated by Electric field

Deflection• M+ ion deflected by magnetic field

Deflection depend: •mass/charge (m/z) ratio: (m/z) ratio HIGH↑ - Deflection LOW↓

Deflection depend:• mass/charge (m/z) ratio: (m/z) ratio LOW↓- Deflection HIGH ↑

37CI+

35CI+

35CI2+

2

3 4

15 Detector

• Convert abundance of M+ ions to electrical current.• M+ ion neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Excellent Online Spectra Database. Click here to view

Mass Spectra Online Database

1 Search methane molecule, CH4

Mass/charge m/z

Relative abundance

Isotopic peak M+ + 1

Molecular ion peak, M+

2 Fragmentation pattern CH4

3 Mass Spectrum CH4

Excellent Online Spectra Database. Click here to view

Mass Spectra Online Database

1 Search methane molecule, CH4

Video on mass spectrometer

Mass/charge m/z

Relative abundance

Isotopic peak M+ + 1

Molecular ion peak, M+

2 Fragmentation pattern CH4

3 Mass Spectrum CH4

Video Ionization/fragmentation Video how MS works Video Mass spectrometer Video how MS works

Mg - 3 Isotopes

26 Mg - 11.3% - m/z highest – deflect LEAST25 Mg - 10.0% 24 Mg – 78.6% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (24Mg x % Ab) + (25Mg x % Ab) + (26Mg x % Ab)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOST Deflect LEAST

Mg - 3 Isotopes

26 Mg - 11.3% - m/z highest – deflect LEAST25 Mg - 10.0% 24 Mg – 78.6% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (24Mg x % Ab) + (25Mg x % Ab) + (26Mg x % Ab)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOST Deflect LEAST

Pb - 4 Isotopes

208Pb – 52% - m/z highest – deflect LEAST207Pb - 22% 206Pb - 24% 204Pb – 2% - m/z lowest – deflect MOST

Relative Isotopic Mass= (204Pb x % Ab) + (206Pb x % Ab) + (207Pb x % Ab) + (208Pb x % Ab)= (204 x 2/100) + (206 x 24/100) + (207 x 22/100) + (208 x 52/100) = 207.20

Deflect MOST Deflect LEAST

CI - 2 Isotopes

37 CI – 24.5% - m/z highest – deflect LEAST 35 CI – 75.5% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (35CI x % Ab) + (37CI x % Ab)= (35 x 75.5/100) + (37 x 24.5/100) = 35.5

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

35CI 37CI

35CI 37CI

CI - 2 Isotopes

37 CI – 24.5% - m/z highest – deflect LEAST 35 CI – 75.5% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (35CI x % Ab) + (37CI x % Ab)= (35 x 75.5/100) + (37 x 24.5/100) = 35.5

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

Br - 2 Isotopes

81Br – 49.3% - m/z highest – deflect LEAST79Br – 50.6% - m/z lowest – deflect MOST

Deflect MOSTDeflect LEAST

35CI 37CI

35CI 37CI

Relative Isotopic Mass:= (79Br x % Ab) + (81Br x % Ab)= (79 x 50.6/100) + (81 x 49.3/100) = 79.9

79Br 81Br

79Br 81Br

H - 3 Isotopes

3H – trace amt 2H – 0.015% - m/z highest – deflect LEAST 1H – 99.9% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (1H x % Ab) + (2H x % Ab)= (1 x 99.9/100) + (2 x 0.015/100) = 1.007

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

1H 2H

1H 2H

3H

H - 3 Isotopes

3H – trace amt 2H – 0.015% - m/z highest – deflect LEAST 1H – 99.9% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (1H x % Ab) + (2H x % Ab)= (1 x 99.9/100) + (2 x 0.015/100) = 1.007

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

C - 3 Isotopes

14C- trace amt13C – 1.1% - m/z highest – deflect LEAST12C – 98.9% - m/z lowest – deflect MOST

Deflect MOSTDeflect LEAST

1H 2H

1H 2H

Relative Isotopic Mass:= (12C x % Ab) + (813Cx % Ab)= (12 x 98.9/100) + (13 x 1.1/100) = 12.01

12C 13C

12C 13C

3H

14C

Ionization and Fragmentation Process- CH3CH2CH2CH3

Ionization Process - CH3CH2CH2CH3

• Bombarded by electron form cation• Molecular ion, M+ = 58• (CH3CH2CH2CH3)

+ = 58

H H | |CH3CH2CH2 C:H + e → CH3CH2CH2

C+.H + 2e | | H H

Ionization M+, m/z = 58

CH3CH2CH2CH3 + e → CH3CH2CH2CH3

+ + 2e

m/z = 58

Ionization forming M+

CH3CH2CH2 : CH3 + e → CH3CH2CH2+.CH3 + 2e

• Fragmentation of M+ producing 43CH3CH2CH2

+·CH3 → CH3CH2CH2+ + ·CH3

• Fragmentation of M+ producing 15CH3CH2CH2

+·CH3 → CH3CH2CH2· + +CH3

Ionization and Fragmentation Process- CH3CH2CH2CH3

Ionization Process - CH3CH2CH2CH3

• Bombarded by electron form cation• Molecular ion, M+ = 58• (CH3CH2CH2CH3)

+ = 58

Fragmentation Process CH3CH2CH2CH3 • Molecular ion, M+ undergo fragmentation • Cation and Radical form• Cation - Detected• Radical –Not detected (No charged)

H H | |CH3CH2CH2 C:H + e → CH3CH2CH2

C+.H + 2e | | H H

Ionization forming M+

CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3

+ 2e

• Fragmentation of M+ producing 29CH3CH2

+·CH2CH3 → CH3CH2+

+ .CH2CH3

Ionization M+, m/z = 58

CH3CH2CH2CH3 + e → CH3CH2CH2CH3

+ + 2e

Ionization and Fragmentation of M+

• Form - m/z = 58, 43 and 15

m/z = 58

m/z = 43

m/z = 15

Ionization and Fragmentation of M+

• Form- m/z = 58 and 29

m/z = 58

m/z = 58

m/z = 29

Ionization forming M+

CH3CH2CH2 : CH3 + e → CH3CH2CH2+.CH3 + 2e

• Fragmentation of M+ producing 43CH3CH2CH2

+·CH3 → CH3CH2CH2+ + ·CH3

• Fragmentation of M+ producing 15CH3CH2CH2

+·CH3 → CH3CH2CH2· + +CH3

Ionization and Fragmentation Process- CH3CH2CH2CH3

Ionization Process - CH3CH2CH2CH3

• Bombarded by electron form cation• Molecular ion, M+ = 58• (CH3CH2CH2CH3)

+ = 58

Fragmentation Process CH3CH2CH2CH3 • Molecular ion, M+ undergo fragmentation • Cation and Radical form• Cation - Detected• Radical –Not detected (No charged)

H H | |CH3CH2CH2 C:H + e → CH3CH2CH2

C+.H + 2e | | H H

Ionization forming M+

CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3

+ 2e

• Fragmentation of M+ producing 29CH3CH2

+·CH2CH3 → CH3CH2+

+ .CH2CH3

Ionization M+, m/z = 58

CH3CH2CH2CH3 + e → CH3CH2CH2CH3

+ + 2e

Ionization and Fragmentation of M+

• Form - m/z = 58, 43 and 15

m/z = 58

m/z = 43

m/z = 15

Ionization and Fragmentation of M+

• Form- m/z = 58 and 29

m/z = 58

m/z = 58

m/z = 29

Ionization and Fragmentation

Unpair electronPositively charged

Will MOVE (ACCELARATED) NOT move

CH3CH2CH2CH3

CH3CH2CH2CH3+- 58 - m/z highest –deflect

LEAST CH3CH2CH2

+ – 43 CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2CH3

Deflect MOST Deflect LEAST

CH3CH2CH2CH3+

CH3CH2CH2+

Fragmentation

ionization

CH3+

CH3+

CH3CH2+

CH3CH2CH2CH3

+

CH3CH2CH2CH3

CH3CH2CH2CH3+- 58 - m/z highest –deflect

LEAST CH3CH2CH2

+ – 43 CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2CH3

Deflect MOST Deflect LEAST

CH3CH2CH2CH3+

CH3CH2CH2+

Fragmentation

ionization

CH3+

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of CH3CH2CH2CH3 CH3CH2CH2CH3 + e → CH3CH2CH2CH

3+ + 2e → 58

or CH3CH2:CH2CH3 + e → CH3CH2

+·CH2CH3 + 2e → 58

Mass spectrum CH3CH2CH2CH3 IonizationCH3CH2CH2CH3

CH3CH2+

CH3CH2CH2CH3

+

Fragmentation of M+

CH3CH2CH2+·CH3 → CH3CH2CH2

+ - 43

CH3CH2+·CH2CH3 → CH3CH2

+ – 29 CH3CH2CH2

+·CH3 → +CH3 - 15

CH3CH2CH2CH3+- 58 - m/z highest –deflect

LEAST CH3CH2CH2

+ – 43 CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

CH3CH2CH2OH

CH3CH2CH2OH+- 60 - m/z highest –deflect LEAST CH2CH2OH+ – 45CH2OH+ - 31CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2OH

Deflect MOST Deflect LEAST

CH3CH2CH2OH+

Fragmentation

ionization

CH3 +

CH3+

CH3CH2+

CH3CH2CH2OH+

CH2CH2OH+ CH2OH+

15 60

CH3CH2CH2OH

CH3CH2CH2OH+- 60 - m/z highest –deflect LEAST CH2CH2OH+ – 45CH2OH+ - 31CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2OH

Deflect MOST Deflect LEAST

CH3CH2CH2OH+

Fragmentation

ionization

CH3 +

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of CH3CH2CH2OHCH3CH2CH2OH + e → CH3CH2CH2OH+ + 2e → 60 orCH3CH2CH2OH + e → CH3CH2

+. CH2OH + 2e → 60

Mass spectrum CH3CH2CH2CH3 IonizationCH3CH2CH2OH

CH3CH2+

CH3CH2CH2OH+

Fragmentation of M+

CH3+.CH2CH2OH→ +CH2CH2OH

- 45

CH3CH2+·CH2OH→ +CH2OH

– 31 CH3CH2

+·CH2OH→ CH3CH2+

– 29

CH3+.CH2CH2OH→ +CH3

- 15

CH2CH2OH+ CH2OH+

15 60

CH3CH2CH2OH+- 60 - m/z highest – deflect LEAST CH2CH2OH+ – 45CH2OH+ - 31CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

15 60

CH3CH(CH3)CH2CH3+- 72 - m/z highest –

deflect LEAST CH3CH(CH3)CH2

+ – 57CH3CH(CH3)+ - 43CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern CH3CH(CH3)CH2CH3

Deflect MOST Deflect LEAST

CH3CH(CH3)CH2CH3+

Fragmentation

Ionization

CH3+

CH3+

CH3CH(CH3)+

15

CH3CH(CH3)CH2+

CH3CH(CH3)CH2CH3+

CH3CH2+

CH3CH(CH3)CH2CH3+

CH3CH(CH3)CH2CH3+- 72 - m/z highest –

deflect LEAST CH3CH(CH3)CH2

+ – 57CH3CH(CH3)+ - 43CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern CH3CH(CH3)CH2CH3

Deflect MOST Deflect LEAST

CH3CH(CH3)CH2CH3+

Fragmentation

Ionization

CH3+

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of CH3CH(CH3)CH2CH3 CH3CH(CH3)CH2CH3 + e → CH3CH(CH3)CH2CH3

+ + 2e → 72 orCH3CH(CH3)CH2CH3 + e → CH3CH(CH3)CH2

+.CH3+ 2e → 72 orCH3CH(CH3)CH2CH3 + e → CH3CH(CH3)+.CH2CH3 + 2e → 72

Mass spectrum CH3CH(CH3)CH2CH3 IonizationCH3CH(CH3)CH2CH3

Fragmentation of M+

CH3CH(CH3)CH2+ -

57CH3CH(CH3)+ – 43 CH3CH2

+

– 29CH3

+ - 15

CH3CH(CH3)+

15

CH3CH(CH3)CH2+

CH3CH(CH3)CH2CH3+

CH3CH2+

CH3CH(CH3)CH2CH3+

CH3CH(CH3)CH2CH3+- 72 - m/z highest –

deflect LEAST CH3CH(CH3)CH2

+ – 57CH3CH(CH3)+ - 43CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

(C(CH3)4)+ - 72 - m/z highest –

deflect LEAST (C(CH3)3)

+ – 57(C(CH3)2)

+ - 42(C(CH3))

+ – 27CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern C(CH3)4

Deflect MOST Deflect LEAST

(C(CH3)4)+

Fragmentation

Ionization

CH3+

CH3+

(C(CH3)3)+

(C(CH3)4)

(C(CH3)2)+

(C(CH3))+

(C(CH3)4)+

(C(CH3)4)+ - 72 - m/z highest –

deflect LEAST (C(CH3)3)

+ – 57(C(CH3)2)

+ - 42(C(CH3))

+ – 27CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern C(CH3)4

Deflect MOST Deflect LEAST

(C(CH3)4)+

Fragmentation

Ionization

CH3+

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of C(CH3)4

C(CH3)4 + e → (C(CH3)4)+ + 2e

→ 72

Mass spectrum C(CH3)4 IonizationC(CH3)4

(C(CH3)3)+

(C(CH3)4)

(C(CH3)2)+

(C(CH3))+

(C(CH3)4)+ - 72 - m/z highest –

deflect LEAST (C(CH3)3)

+ – 57(C(CH3)2)

+ - 42(C(CH3))

+ – 27CH3

+ –15 - m/z lowest– deflect MOST

Fragmentation of M+

(C(CH3)3)+ – 57

(C(CH3)2)+ - 42

(C(CH3))+ – 27

CH3+ –15

(C(CH3)4)+

CI2molecule

37CI-37CI - 74 - m/z highest – deflect LEAST 35CI-37CI –72 35CI-35CI –70 37CI –37 35CI –35 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for molecule CI2

Deflect MOST Deflect LEAST

35CI-35CI+

35CI+

35CI-37CI+

37CI-37CI+

Fragmentation

form atoms

Ionization

37CI+

35CI+

37CI-37CI+

CI2molecule

37CI-37CI - 74 - m/z highest – deflect LEAST 35CI-37CI –72 35CI-35CI –70 37CI –37 35CI –35 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for molecule CI2

Deflect MOST Deflect LEAST

35CI-35CI+

35CI+

35CI-37CI+

37CI-37CI+

Fragmentation

form atoms

Ionization

37CI+

35CI+

37CI-37CI+

Ionization and Fragmentation Process

Fragmentation

Fragmentation of CI2+ into CI+

CI+.CI → [35CI+ + 35CI·] + 2e –35

CI+.CI → [37CI+ + 37CI·] + 2e –37

Ionization of CI2 to CI2+

CI:CI + e- →[35CI+.35CI] + 2e – 70CI:CI + e- →[35CI+.37CI] + 2e – 72CI:CI + e- →[37CI+.37CI] + 2e – 74

m/z = 37

m/z = 35

Ratio (35CI : 37CI) - 3:1

Mass spectrum CI2 / CI atoms

Ratio (35CI35CI: 35CI37CI: 37CI37CI) - 9:6:1

IonizationCI2 molecule

37CI-37CI - 74 - m/z highest – deflect LEAST 35CI-37CI –72 35CI-35CI –70 37CI –37 35CI –35 - m/z lowest– deflect MOST

Br2molecule

81Br-81Br - 162 - m/z highest – deflect LEAST 79Br-81Br –160 79Br-79Br –158 81Br –81 79Br –79 - m/z lowest– deflect MOST

Deflect MOST Deflect LEAST

79Br-79Br+

79Br+

79Br-81Br+

81Br-81Br+

Fragmentation

form atoms

Ionization

81Br+

79Br+

81Br-81Br+

Mass spectrometry - Ionization/ Fragmentation pattern for molecule Br2

Br2molecule

81Br-81Br - 162 - m/z highest – deflect LEAST 79Br-81Br –160 79Br-79Br –158 81Br –81 79Br –79 - m/z lowest– deflect MOST

Deflect MOST Deflect LEAST

79Br-79Br+

79Br+

79Br-81Br+

81Br-81Br+

Fragmentation

form atoms

Ionization

81Br+

79Br+

81Br-81Br+

Ionization and Fragmentation Process

Fragmentation

Fragmentation of Br2+

to Br+

Br+.Br → [81Br+ + 81Br·] – 81

Br+.Br →[79Br+ + 79Br·] – 79

Ionization of Br2 to Br2

+

Br:Br + e- →[81Br+.81Br] + 2e – 162Br:Br + e- →[79Br+.81Br] + 2e – 160Br:Br + e- →[79Br+.79Br] + 2e– 158

m/z = 79

m/z = 81

Ratio (79Br : 81Br) - 1:1

Mass spectrum Br2 / Br atoms

Ratio (79Br79Br: 79Br81Br: 81Br81Br) – 1:2:1

IonizationBr2 molecule

81Br-81Br - 162 - m/z highest – deflect LEAST 79Br-81Br –160 79Br-79Br –158 81Br – 81 79Br – 79 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for molecule Br2

Acknowledgements

Thanks to source of pictures and video used in this presentationhttp://serc.carleton.edu/research_education/geochemsheets/techniques/gassourcemassspec.htmlhttp://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13ms.htmlhttp://science.howstuffworks.com/mass-spectrometry3.htm

Thanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/

Prepared by Lawrence Kok

Check out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com