HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651) · 2017-09-22 · competitive to new...

Post on 10-Mar-2020

0 views 0 download

Transcript of HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651) · 2017-09-22 · competitive to new...

HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg

ALLOYS (8090-T651)

F. Binsfeld, M. Habashi, J. Galland, J. Fidelle, D. Miannay, P. Rofidal

To cite this version:

F. Binsfeld, M. Habashi, J. Galland, J. Fidelle, D. Miannay, et al.. HYDROGEN EMBRIT-TLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651). Journal de Physique Colloques, 1987, 48(C3), pp.C3-587-C3-596. <10.1051/jphyscol:1987368>. <jpa-00226599>

HAL Id: jpa-00226599

https://hal.archives-ouvertes.fr/jpa-00226599

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinee au depot et a la diffusion de documentsscientifiques de niveau recherche, publies ou non,emanant des etablissements d’enseignement et derecherche francais ou etrangers, des laboratoirespublics ou prives.

JOURNAL DE PHYSIQUE Colloque C3, suppl6ment au n09, Tome 48, septembre 1987

HYDROGEN EMBRITTLEMENT IN Al-Li-Cu-Mg ALLOYS (8090-T651)

F. BINSFELD, M. HABASHI, J. GALLAND, J.P. FIDELLE*, D. MIANNAY* and P. ROFIDAL*

Ecole Centrale des Arts et Manufactures, F-92295 Ch.Eitenay-Malabry Cedex, France *CEA, B.P. 511, F-75752 Paris Cedex 15, France

ABSTRACT

This paper describes the hydrogen embrittlement (HE) o f an A1-Li a l loy

aged a t 190°C and with d i f f e ren t durations o f ageing (10, 15, 20 and 30 hr).

Two techniques were employed t o measure HE : a) cathodic polar izat ion i n a molten sa l ts bath with -3 VIAg on tens i le specimens ; b ) gaseous hydrogenation

on disks. Hydrogen charging was achieved a t 190°C. The resul ts show that HE i s

important when the a1 1 oy i s i n the over-aged condition.

INTRODUCTION

A1-Li a l loys have gathered strong in teres t especial ly i n the a i r c r a f t

industry. Compared t o conventional high-strengh a1 umini um a1 loys o f the 2000

or 7000 series, i t i s known tha t A1-Li a l loys o f fe r a 10% increase i n Young's

modulus along wi th a 10% decrease i n speci f ic weight, thus making them rather

competitive t o new non-metal 1 i c materi a1 s 1 i ke carbon f i b r e reinforced '

composi tes. Moreover, t h e i r mechanical properties are equivalent t o those o f conventional high-strength A1 . a1 loys.

I n the binary Al-Li a l loy system, the 6 ' (A13Li) pa r t i c l es which

prec ip i ta te throughout the matrix are responsible fo r strengthening. I n the

A1-Li-Cu-Mg a l loys apart from the 6 I , semi coherent, S t (AlzCuMg) and TI

(A12CuLi) phases prec ip i ta te during a r t i f i c i a l ageing treatment. 6 ' i s a

metastable phase' which forms as spherical par t ic les which remain coherent wi th the matrix ( 1 ). During p las t i c deformation, these par t ic les may be cut by

moving dislocations such tha t fur ther deformation along the same s l i p plane i s

favoured ; s l i p becomes coplanar (2, 3) and leads t o poor toughness and

ducti 1 i ty. The s l i p cop1 anari t y gives ri se t o stress concentrations a t grain

boundaries i nduci ng intergranul ar f a i 1 ures (4). The growth ra te o f 6 depends

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987368

JOURNAL DE PHYSIQUE

on vacancy concen t ra t ion which i n t u r n i s a f f e c t e d by high s o l u t i o n t r ea tmen t

t empera tu re f o l 1 owed by c o l d water quenched (5 1. The s t r e n g t h enhancement

du r ing room temperature ageing appears t o be due t o t h e p r e c i p i t a t i o n o f 6' phase. Subsequent a r t i f i c i a l ageing g i v e s r i s e t o a g r a i n boundary REZ,

( P r e c i p i t a t i o n F ree Zone) i n d i c a t i n g t h a t $ p r e c i p i t a t i o n i s dependent upon

t h e presence of excess vacancies (5). The P.F.Z. grows according t o t 1 / 3 1 aw,

where t i s t h e ageing t ime a t a given ageing temperature ( 6 ) . Attempts t o

improve toughness o f A1-Li a1 loys have been -based on t h e change i n g r a i n

s t r u c t u r e t o i n f l u e n c e t h e f r a c t u r e process. Addi t ion of manganese i s known a s

a g r a i n - r e f i n e r b u t a s an improvement t o g r o s s i n t e r g r a n u l a r f a i l u r e (7).

Zirconium add i t ion of l e s s than 0.2% forms p ' (A13Zr) p r e c i p i t a t i o n which

g i ves r i s e to g r a i n--ref i nement, i n h i b i t i o n of r e c r y s t a l 1 i s a t i o n and decreas ing

shea red 6 ' p a r t i c l e s by t h e moving d i s l o c a t i o n s (8). However, zirconium g i v e s

h igh ly t e x t u r e d s t r u c t u r e s ( 5 ) i n A1-Li a l loys .

The Cu and Mg p r e c i p i t a t e heterogeneous1 y dur ing a r t i f i c i a l ageing as S '

(A1 2CuMg) and TI (A1 2CuLi ) . The nuc lea t ion sites of t h e s e p r e c i p i t a t e s a r e

d i s l o c a t i o n s formed dur ing quenching, d i s l o c a t i o n s in t roduced dur ing

s t r e t c h i n g and low-angle subgrain boundaries. Grain boundary p r e c i p i t a t i o n of

6 (AlLi ) and complex A1-CU-Mg phases occur dur ing a r t i f i c i a l ageing ( 9 ) . a

s t r e t c h be fo re a r t i f i c i a l ageing i n c r e a s e s t h e r a t e of ageing and then

i n c r e a s e s t h e y i e l d s t r e n g t h and t h e u l t ima te t e n s i l e s t r e n g t h b u t reduces

t h e e longa t ion t o f r a c t u r e . For each chemical composition of A1-Li a l l o y ,

t h e r e i s a s p e c i f i c ageing hea t t r ea tmen t cond i t ion (peak aged c o n d i t i o n ) a t

which t h e mechanical p r o p e r t i e s a r e optimum. In t h e under-aged cond i t ion , t h e

deformation i s l o c a l i z e d w i t h i n s l i p bands whi le a t t h e peak c o n d i t i o n t h e

deformation i s homogeneous and due to t h e increased volume f r a c t i o n of S 1

throughout t h e matrix. In t h e overaged cond i t ion , t h e p r e c i p i t a t i o n of 'S' is a t once wi th in t h e matr ix and i n t h e sub-grain boundaries (9) .

On t h e o t h e r hand, conventional h igh-s t rength aluminium a l l o y s such as A1-Zn-Mg, Al-Zn-Mg-Cu and A1-Mg s u f f e r a r e v e r s i b l e hydrogen embri t t lement

whereas A1-Cu and al-Cu-Mg appear to be r e s i s t a n t to hydrogen in t roduced

e i t h e r by ca thod ic charging o r by exposure to water con ta in ing environments

(10).

To t h e b e s t of our knowledge, A1 -Li-Mg-Cu-Zr (8090 a l l o y ) has not been

s t u d i e d so f a r . In t h i s paper, hydrogen embri t t lement of 8090 - T651 was then

inves t iga t ed .

EXPERIMENTAL

The chemical composition and t h e th ickness t of t h e a l l o y s s t u d i e d i n

t h i s i n v e s t i g a t i o n a r e given i n t a b l e I .

Table I : Chemical composition and th ickness of t h e a l l o y s s tud ied (wt%) . ................................................................

I Li I Mg I Cu I Zr I S i I Ti I Fe INa,ppmlt ,mml

1 2.7 1 1.1 1 1 .3 1 0.09 1 0.02 1 0.02 1 0.02 1 3 1 0 .8 1 1 2.9 1 1.1 1 1 .3 1 0.09 1 0.02 1 0.02 1 0.02 1 3 1 1 .6 1

The experimental ma te r i a l was suppl i ed by CEGEDUR PECHINEY i n t h e form of

0.8 and 1.6 nun r o l l e d p l a t e i n t h e s o l u t i o n t r e a t e d (535OC dur ing I h r and then

co ld water quenched) and 3% s t r e t c h e d , condi t ion T-351. Hydrogen charging was

achieved by two methods :

1 ) Cathodical ly on t e n s i l e specimens having 1.6 mmthickness i n a molten

s a l t s bath (1 1 ) a t 190°C dur ing 10, 15, 20 and 30 h r and a t d i f f e r e n t cathodic

p o t e n t i a l s : -1 .5, -2.0, -2.5 and -3.0 V/Ag. Af te r hydrogenation, outgasing

was achieved, and QH was measured a t 520°C and 1000°C. Uncharged and hydrogen

c a t h o d i c a l l y charged specimens were t e n s i l e t e s t e d a t room temperature , us ing

a s t r a i n r a t e o f 2 . 7 . 1 0 - ~ s - ~ t o s tudy t h e e f f e c t of hydrogen charging on

t e n s i l e p roper t i e s . Reference specimens were those aged a t 1 90°C i n fu rnace

dur ing 10, 15, 20 and 30 hr .

2 ) Gaseous hydrogen on d i sks having 0 .8 mm th ickness . The d e t a i l s of t h i s

method were descr ibed elsewhere (12). The re fe rence gaz was helium. The

f o l l owing procedures were achieved :

a ) inc reas ing t h e r a t e of hydrogen pressure A P/ A t from 0.007 t o 188 -4

M%hi&&ternal hydrogen). The a l l o y was i n T651 cond i t ion ;

b) thermal hydrogen o r helium charging on both s i d e s a t 1 90°C, dur ing

20 h r . Gas p ressu re was 400 Pa ( i n t e r n a l hydrogen) ;

c ) c a t h o d i c a l l y hydrogen charging a t 190°C dur ing 20 h r and with

-3V/Ag ( i n t e rna l hydrogen).

Tn t h e two l a s t cond i t ions e i t h e r he1 ium ( b ) or/and hydrogen gas ( c ) were usedtochieve f a i l u r e .

All t h e f a i l u r e s were c a r r i e d o u t a t 20°C. F rac tu re su r faces were examined using a scanning e l e c t r o n microscope.

JOURNAL DE PHYSIQUE

EXPERIMENTAL RESULTS

1 ) Cathod ica l l y hydrogen charging

F igure 1 shows t h a t t h e outgased QH i s an inc reas ing f u n c t i o n as t h e

a p p l i e d c a t h o d i c p o t e n t i a l l e v e l and t h e t ime of hydrogen charging a r e

inc reased whatever t h e outgas ing temperature i s 520°C o r i s 1 000°C. However,

QH measured a t 1000°C i s h igher than t h a t obta ined a t 520°C showing t h a t

molecular hydrogen t r app ing occurs and i n c r e a s e s with t h e s e v e r i t y o f hydrogen

cha rg ing cond i t ion . QH p r i o r t o hydrogen charging i s measured a t 520°C t o be

about 5 ppm f o r t = 1.6 m and about 1 0 ppm f o r t = 0.8 nun, and i s due t o quenching t h e a l l o y from 535°C i n cold water.

F igu re 2 shows t h e v a r i a t i o n of t h e y i e l d s t r e n g t h Re a s a func t ion of

hydrogen charging t ime i n t h e molten s a l t s bath a t f r e e p o t e n t i a l and a t

-3V/Ag, and a s a func t ion of ageing time when t h e ageing t r ea tmen t i s achieved

i n t h e furnace with o r wi thout vacuum. The y i e l d s t r eng th is independent on

t h e ageing t i m e and on t h e ca thod ic p o t e n t i a l level and dxceeds t h o s e due t o ageing h e a t t r ea tmen t i n fu rnace dur ing va r ious t imes ; t h e i r Re ach ieves a

maximum f o r 15 h r ageing.

Maximum t e n s i l e s t r e n g t h Rm v a r i a t i o n a s a func t ion of ageing t ime i s

very s e n s i t i v e t o t h e ageing h e a t t r ea tmen t cond i t ion , f i g u r e 3 . However, Rm va lues measured i n t h e molten s a l t s bath a r e higher than t h a t ob ta ined when

us ing t h e furnace t o achieve t h e ageing hea t t rea tment . Independently o f t h e

h e a t t r e a t m e n t c o n d i t i o n , t h e maximum stress Rm i s a l s o maximum f o r 1 5 h r

ageing.

D u c t i l i t y l o s s F % due t o hydrogen charging is about 20% f o r ageing

t ime varying f r o m l O t o 2 0 h r , f i g u r e 4 . % d r a s t i c a l l y i n c r e a s e s u p t o

75% f o r a 30 h r ageing time.

2 ) Gaseous hydrogen charging

For a1 1 test cond i t ions , t h e d i sks c e n t r a l p a r t (under p res su re ) breaks

i n t o numerous 1 i t t l e p i eces , f i g u r e 5 , i n d i c a t i n g t h e mater ia l b r i t t l e

cond i t ion . we have t o remember t h a t t h e r e t a i n e d QH p r i o r gaseous hydrogen

charging was measured t o be about 10 ppm. P a r t l y f o r t h i s reason and c e r t a i n l y

due t o t h e e f f e c t i v e n e s s of s u r f a c e oxides , no s i g n i f i c a n t e m b r i t t l i n g e f f e c t

o f hydrogen could be evidenced, f i g u r e 6 .

DISCUSSION

The results show that we have introduced high concentrations of hydrogen

in A1 -Li alloy by using the molten sal ts b a t h technique a t the optimum ageing

temperature. To the best of our knowledge, no attempt has been done to measure

the hydrogen diffusion coefficient DH in A1-Li alloys a t 190°C. However,

NAKASHIMA and coll. (13) have measured DH in binary A1-Li system as a function

of Li percentage and of temperature. Their results show great scattering and

DH i s estimated as about 1 o - ~ cm2. s-1 in the temperature range 1 80 t o 480°C,

i ndependentl y of Li%. I n our conditions, hydrogen may diffuse a t a distance d

from the surface of the metal equal to about 85 t o 150 pm for charging time

vary'ing from 10 t o 30 h r respectively and according t o the relation :

d 5 . That i s t o say hydrogen may diffuse up t o or behind lithium

depletion zone (14) (S 100 pm), which i s far beyond the oxide thickness (032 pm) (14).

As mentionned above, S1 phase i s initiated on dislocations sites. Knowing

that internal hydrogen promotes dislocations density (1 5, 16), the probabil i ty

of S' formation i s then more important in the presence of hydrogen than

without hydrogen. Tensile stresses are increased when the A1 -Li a1 loy i s

cathodical ly hydrogen charged. This increase does depend on hydrogen

concentration, namely the polarisqtion time a t 190°C. Table I1 gives the

percentage increase in tensile properties due t o hydrogen charging for two

durations 15 and 30 h r . The reference alloy i s taken as t h a t heat treated in

furnace under vacuum.

Table I I : Relative variation in the mechanical properties due to time of

hydrogen charging (ageing time) a t -3.0 V/Ag. ....................................... I t, hr I A Re% I A R ~ % I F%* I 1----_--1__---_--_1---------I--------- I 1 1 5 1 6 1 5 1 2 3 1 \ 30 1 115 1 19 1 75 1

The effect of internal hydrogen on the mechanical properties i s very

important when the alloy i s in an overaged condition (190°C, 30 hr).klithout

internal hydrogen and ageing heat treatment, the fai 1 ure surfaces show ductile

rupture with f l a t surfaces containing s l ip lines, figure 7a. Figure 7b shows that when the alloy i s aged heat treatment a t 190°C during 30 hr in the

C3-592 JOURNAL DE PHYSIQUE

fu rnace under vacuum, a mixed r u p t u r e t y p e occurs . Deep c racks i n t h e

sub-gra in boundar ies and many t e a r i n g s throughout t h e m a t r i x a r e observed.

Th i s r e s u l t p o i n t s o u t t h a t coa r sed 6' p a r t i c l e s ( 8 ) and S ' phase wi th in t h e

ma t r ix ( 9 ) and a l s o , S ' ( ~ 1 2CuMg) ( 9 ) , T2 (A12Cu~i ) ( 1 7) and A16(Fe, Cu) (18 )

p a r t i c l e s may be p r e s e n t i n t h e sub-grain boundaries. With i n t e r n a l hydrogen

and a t 500 pm from t h e s u r f a c e , t h e r u p t u r e t ype changes from i n t e r g r a n u l a r

(10 h r ) t o mixed ( i n t e r + t r a n s c r i s t a l l i n e ) (1 5 and 20 h r ) and f i n a l l y becomes

i n t e r g r a n u l a r (30 h r ) , f i g u r e 8. However, a t 100 pm from t h e s u r f a c e , t h e

f a i l u r e h a s an i n t e r g r a n u l a r f e a t u r e , independent ly o f t ime of ageing. The

l a s t r e s u l t s prove t h a t hydrogen has d i f f u s e d and e m b r i t t l e d t h e metal a t a

d i s t a n c e equal t o o r g r e a t e r than 100 pm from t h e m e t a l l i c su r f ace . The

s u r f a c e ox ides i s t hen overcome du r ing c a t h o d i c charging i n molten s a l t s ba th .

T h i s i s not t h e c a s e whi le gaseous hydrogen charging. However t h e r e s t r i c t e d

number o f d i s k s l e f t a v a i l a b l e d i d no t al low t h e necessary i n v e s t i g a t i o n o f

t h e p r e s s u r e i n c r e a s e r a t e i n f luence . The re fo re , t h e s c a r c e tests on d i s k s

hydrogen charged by t h i s t echn ique a r e i nconc lus ive but ought t o b e resumed

more c o n s i s t e n t l y , e s p e c i a l 1 y w i th t h i c k e r d i sks .

CONCLUSION

I n t h i s work we have i n v e s t i g a t e d t h e hydrogen ernbr i t t lement o f an A1-Li

a1 loy (8090). The r e s u l t s ob ta ined lead t o t h e fo l lowing conc lus ions :

1 ) Using t h e molten s a l t s ba th t echn ique and c a t h o d i c a l l y hydrogen

charged t h e 8090 - T351 a1 loy a t t h e peak tempera ture (1 90°C). The outgased

q u a n t i t y of hydrogen i s an i n c r e a s i n g f u n c t i o n as t h e t ime of cha rg ing ( age ing

t ime) and c a t h o d i c p o t e n t i a l l eve l i nc rease . Molecular hydrogen t r app ing i s

po in t ed out.

2) Hydrogen may promote d i s l o c a t i o n s d e n s i t y which a r e t h e i n i t i a t i o n

s i t e s o f S ' phase. T e n s i l e stresses and d u c t i l i t y l o s s a r e t hen increased. The

e f f e c t of hydrogen i s impor tant when t h e a l l o y i s i n t h e overaged cond i t i on .

3 ) Hydrogen promotes a l s o i n t e r g r a n u l a r f a i l u r e , e s p e c i a l 1 y i n t h e

overaged cond i t i on . P r e c i p i t a t i o n o f S ' , T2 and A16(Fe, Cu) p a r t i c i e s i n t h e

sub-gra in boundar ies may i n t e r a c t wi th hydrogen atoms and t h e embri t t l e m e n t i s favoured.

REFERENCES

( 1 ) 5. NOBLE, G.E. THOMSON - Metal S c i . J. 5, 114, (1 971).

( 2 ) T.H. SANDERS, E.A. STARKE - Acta Meta l l . 30, 927, (1982).

(3 ) 8. NgBLE, S.J. HARRIS, K . DINSDALE - Metal S c i . J . 16, 425, (1982).

(4) T.H. SANDERS - Proc. 1s t I n t . A1-Li Conf., p. 63, Meta l l . Soc. AIME,

(1981).

(5) H.M. FLOWER, P.J. GREGSON, C.N.J. TITE, A.K. MUKHOPADHYAY - P ~ o c .

Al-A1 loys, t h e i r physical and mechanical proper t ies - Ed i t o r s E.A. STARKE

J r and T.H. SANDERS Jr , Un ivers i t y o f V i r g i n i a , Char lo t tesv i l l e , USA,

June (1986), p . 743.

(6) I.M. LIFSHITZ, V.V. SLYOZOV - J. Phys. Chem. Sol ids, 19, 35, (1961).

(7) K. DINSDALE, S.J. HARRIS, B. NOBLE - I b i d . 4, p. 101.

(8) P.J.E. BISCHLER, J.W. MARTIN - Ib id . 5, p. 963.

(9) S.J. HARRIS, B. NOBLE, K. DINSDALE, M. PRIDHAM - Ib i d . 5, p. 755.

(10) G.M. SCAMANS - Proc. Hydrogen E f f ec t s i n Metals, ed i ted by I.M. BERNSTEIN

and A.W. THOMPSON, The Meta l l . Soc. o f AIME, Carnegie-Mellon Univers i ty ,

PIH, PENNSYLVANIA (1980), p. 467.

(1 1 ) A. ELKHOLY, J. GALLAND, P. AZOU, P. BASTIEN - C.R. Acad. Sci., 284, s6 r i e

C, (1977), p. 363.

(12) J.P. FIDELLE - "Hydrogen embrittlement t es t i ng " ASTM STP 543, 31 (1974),

p. 243.

(13) M. NAKASHIMA, M. SAEKI, Y. ARATONO, E. TACHIKAWA - Journal o f Nuclear

Mater ia ls , 116, (1983), p. 141.

(14) F. DEEREVE, Ph. MEYER, N. THORNE - Pertes en 1 i th ium des a l l i ages

A1-Li-X, Rapport in te rne de PECHINEY, mars (1 986).

(15) J. EASTMAN, T. MATSUMOTO, N. NARITA, F. HEUBAUM, H.K. BIRNBAUM - Conf.

Proc. on "Hydrogen i n Metals" Edi ted by I. M. BERNSTEIN, A.W. THOMPSON

Carnegie - Me1 l o n Un ivers i t y , P i t tsburgh, Pennsylvania, U.S.A. (1980),

p. 397.

(16) K.S. SHIN, C.G. PARK, M. MESH11 - I b i d 15, p.209.

( I T ) F.S. LIN, S.B. CHAKRABORTTY, E.A. STARKE J r - Met. Trans. 13A (1982),

p. 401.

(18) N.J. OWEN, D.J. FIELD, E.P. BUTLER - Ib id . 4, p. 1217.

JOURNAL DE PHYSIQUE

Figure 1 : Variat ion of Q desorded a t B 5 2 0 ' ~ and 1000 C as a funct ion of cathodic p o t e n t i a l l eve l and of hydrogen charging (ageing time) ; hydrogen charging temperature = 19O0C.

0 1151 (0lDITlOl

DLIW sun ur* s I, 11w~cl + mna sun urn AT -1 114 (1W.O . N U T S "1- .IW 1I)O.O 0 ,mu([ "IT"ILY(IWC1

I , h r Figure 3 : Variat ion of maximum

t r u e s t r e s s a s a funct ion of e i t h e r t h e hydrogen charging time (with and without cathodic po la r iza t ion) o r ageing time : peak temperature = 190°C.

t . h r Figure 2 : Variat ion of y i e l d

s t reng th as a funct ion of e i t h e r the hydrogen charging time (with and without cathodic po la r iza t ion) o r ageing time ; peak temperature = 190°C.

Figure 4 : Variat ion of maximum s t r a i n a s a funct ion of e i t h e r the hydrogen charging time (with and without cathodic po la r iza t ion) o r ageing time ; peak temperature = 190°C.

Figure 5 : View of a d i sk f a i l u r e by inc reas ing hydrogen gas- 1 pressure a t 0.1 MPa.min .

1

Figure 6 : Disk f a i l u r e pressure of hydrogen o r helium gas versus the f a t e of inc reas ing of the gas and of p r i o r i n t e r n a l hydrogen charging : ist s e r i e s corresponds t o n a t u r a l ageing u n t i l 1985, 2nd s e r i e s corresponds t o n a t u r a l ageing u n t i l 1986.

Figure 7a : Surface f a i l u r e by t e n s i l e Figure 7b : Surface failure by tensile t e s t a t room temperature of t e s t a t room temperature of 8090-~351 a l l o y . 8090 a l l o y aged a t 190°C

during 30 hr .

JOURNAL DE PHYSIQUE

H CHARGING T I M E ( - 3 V / A g , 1 9 0 ° C )

Figure 8 : Var ia t ion of the type of rup tu re i n 8090 a l l o y c a t h o d i c a l l y hydrogenated (-3V/Ag) a s a func t ion of

lo hr

time of hydrogenat ion and the depth from the specimen su r face ; peak temperature = 190°c.