Http://numericalmethods.eng.usf.edu 1 Newton’s Divided Difference Polynomial Method of...

Post on 17-Dec-2015

217 views 0 download

Tags:

Transcript of Http://numericalmethods.eng.usf.edu 1 Newton’s Divided Difference Polynomial Method of...

http://numericalmethods.eng.usf.edu 1

Newton’s Divided Difference Polynomial

Method of Interpolation

Civil Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

Undergraduates

Newton’s Divided Difference Method of

Interpolation

http://numericalmethods.eng.usf.edu

http://numericalmethods.eng.usf.edu3

What is Interpolation ?

Given (x0,y0), (x1,y1), …… (xn,yn), find the value of ‘y’ at a value of ‘x’ that is not given.

http://numericalmethods.eng.usf.edu4

Interpolants

Polynomials are the most common choice of interpolants because they are easy to:

EvaluateDifferentiate, and Integrate.

http://numericalmethods.eng.usf.edu5

Newton’s Divided Difference Method

Linear interpolation: Given pass a linear interpolant through the data

where

),,( 00 yx ),,( 11 yx

)()( 0101 xxbbxf

)( 00 xfb

01

011

)()(

xx

xfxfb

http://numericalmethods.eng.usf.edu6

ExampleTo maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth plot for a lake. Determine the value of the temperature at z = −7.5 using Newton’s Divided Difference method for linear interpolation.

Temperature vs. depth of a lake

Temperature Depth

T (oC) z (m)19.1 019.1 -119 -2

18.8 -318.7 -418.3 -518.2 -617.6 -711.7 -89.9 -99.1 -10

http://numericalmethods.eng.usf.edu7

Linear Interpolation

15 10 5 011

12

13

14

15

16

17

1817.6

11.7

y s

f range( )

f x desired

x s1

10x s0

10 x s range x desired

)()( 010 zzbbzT

,80 z 7.11)( 0 zT

,71 z 6.17)( 1 zT

)( 00 zTb

7.11

01

011

)()(

zz

zTzTb

87

7.116.17

9.5

http://numericalmethods.eng.usf.edu8

Linear Interpolation (contd)

15 10 5 011

12

13

14

15

16

17

1817.6

11.7

y s

f range( )

f x desired

x s1

10x s0

10 x s range x desired

)()( 010 zzbbzT

),8(9.57.11 z 78 z

At 5.7z

)85.7(9.57.11)5.7( T

C 65.14

http://numericalmethods.eng.usf.edu9

Quadratic InterpolationGiven ),,( 00 yx ),,( 11 yx and ),,( 22 yx fit a quadratic interpolant through the data.

))(()()( 1020102 xxxxbxxbbxf

)( 00 xfb

01

011

)()(

xx

xfxfb

02

01

01

12

12

2

)()()()(

xx

xx

xfxf

xx

xfxf

b

http://numericalmethods.eng.usf.edu10

ExampleTo maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth plot for a lake. Determine the value of the temperature at z = −7.5 using Newton’s Divided Difference method for quadratic interpolation.

Temperature vs. depth of a lake

Temperature Depth

T (oC) z (m)19.1 019.1 -119 -2

18.8 -318.7 -418.3 -518.2 -617.6 -711.7 -89.9 -99.1 -10

http://numericalmethods.eng.usf.edu11

Quadratic Interpolation (contd)

9 8.5 8 7.5 78

10

12

14

16

1817.6

9.89238

y s

f range( )

f x desired

79 x s range x desired

))(()()( 102010 zzzzbzzbbzT

,90 z 9.9)( 0 zT

,81 z 7.11)( 1 zT

,72 z 6.17)( 2 zT

http://numericalmethods.eng.usf.edu12

Quadratic Interpolation (contd)

9.9)( 00 zTb

8.178

9.97.11)()(

01

011

zz

zTzTb

02

01

01

12

12

2

)()()()(

zz

zz

zTzT

zz

zTzT

b

97

98

9.97.11

87

7.116.17

2

8.19.5

05.2

http://numericalmethods.eng.usf.edu13

Quadratic Interpolation (contd)

))(()()( 102010 zzzzbzzbbzT

),8)(9(05.2)9(8.19.9 zzz 79 z

At ,5.7z

)85.7)(95.7(05.2)95.7(8.19.9)5.7( T

C 138.14 The absolute relative approximate error a obtained between the results

from the first and second order polynomial is

100138.14

65.14138.14

a

%6251.3

http://numericalmethods.eng.usf.edu14

General Form

))(()()( 1020102 xxxxbxxbbxf

where

Rewriting))(](,,[)](,[][)( 1001200102 xxxxxxxfxxxxfxfxf

)(][ 000 xfxfb

01

01011

)()(],[

xx

xfxfxxfb

02

01

01

12

12

02

01120122

)()()()(

],[],[],,[

xx

xx

xfxf

xx

xfxf

xx

xxfxxfxxxfb

http://numericalmethods.eng.usf.edu15

General FormGiven )1( n data points, nnnn yxyxyxyx ,,,,......,,,, 111100 as

))...()((....)()( 110010 nnn xxxxxxbxxbbxf

where

][ 00 xfb

],[ 011 xxfb

],,[ 0122 xxxfb

],....,,[ 0211 xxxfb nnn

],....,,[ 01 xxxfb nnn

http://numericalmethods.eng.usf.edu16

General formThe third order polynomial, given ),,( 00 yx ),,( 11 yx ),,( 22 yx and ),,( 33 yx is

))()(](,,,[

))(](,,[)](,[][)(

2100123

1001200103

xxxxxxxxxxf

xxxxxxxfxxxxfxfxf

0b

0x )( 0xf 1b

],[ 01 xxf 2b

1x )( 1xf ],,[ 012 xxxf 3b

],[ 12 xxf ],,,[ 0123 xxxxf

2x )( 2xf ],,[ 123 xxxf

],[ 23 xxf

3x )( 3xf

http://numericalmethods.eng.usf.edu17

ExampleTo maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth plot for a lake. Determine the value of the temperature at z = −7.5 using Newton’s Divided Difference method for cubic interpolation.

Temperature vs. depth of a lake

Temperature Depth

T (oC) z (m)19.1 019.1 -119 -2

18.8 -318.7 -418.3 -518.2 -617.6 -711.7 -89.9 -99.1 -10

http://numericalmethods.eng.usf.edu18

Example

The temperature profile is chosen as

))()(())(()()( 2103102010 zzzzzzbzzzzbzzbbzT

We need to choose four data points that are closest to 5.7z

,90 z 9.9)( 0 zT

,81 z 7.11)( 1 zT

,72 z 6.17)( 2 zT

,63 z 2.18)( 3 zT

http://numericalmethods.eng.usf.edu19

Example

The values of the constants are obtained as

0b 9.9 1b 8.1 2b 05.2 3b 5667.1

0b

,90 z 9.9 1b

8.1 2b

,81 z 7.11 05.2 3b

9.5 5667.1

,72 z 6.17 65.2

6.0

,63 z 2.18

http://numericalmethods.eng.usf.edu20

Example

))()(())(()()( 2103102010 zzzzzzbzzzzbzzbbzT

)7)(8)(9(5667.1)8)(9(05.2)9(8.19.9 zzzzzz , −9 ≤ z ≤ −6

At ,5.7z

)75.7)(85.7)(95.7(5667.1

)85.7)(95.7(05.2)95.7(8.19.9)5.7(

T

C 725.14 The absolute relative approximate error a obtained between the

results from the second and third order polynomial is

100725.14

138.14725.14

a

%9898.3

http://numericalmethods.eng.usf.edu21

Comparison Table

Order of Polynomial

1 2 3

Temperature (oC) 65.14 138.14 725.14

Absolute Relative Approximate Error

---------- %6251.3 %9898.3

http://numericalmethods.eng.usf.edu22

ThermoclineWhat is the value of depth at which the thermocline exists?

The position where the thermocline exists is given where 02

2

dz

Td

.

69,5667.155.3558.2629.615

69,7895667.18905.298.19.932

zzzz

zzzzzzzzT

69,7.41.7158.262 2 zzzdz

dT

69,4.91.712

2

zzdz

Td

Simply setting this expression equal to zero, we get

69,4.910.710 zz

m5638.7z

Additional ResourcesFor all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/newton_divided_difference_method.html

THE END

http://numericalmethods.eng.usf.edu