Histograms of Oriented Gradients for Human Detection(HOG) Presenter :JIA-HONG,DONG Advisor : Yen-...

Post on 13-Dec-2015

220 views 2 download

Transcript of Histograms of Oriented Gradients for Human Detection(HOG) Presenter :JIA-HONG,DONG Advisor : Yen-...

Histograms of Oriented Gradients for Human Detection(HOG)

Presenter :JIA-HONG,DONG

Advisor : Yen- Ting, Chen

1

Dalal, N.; Triggs, B., IEEE Computer Society Conference on Computer Vision and Pattern Recognition(2005) vol. 1 ,pp.886 - 893  

Outline1. Introduction2. Methodology3. Results4. Discussion 5. Conclusion

2

Introduction Detecting humans in images is a

challenging task Variable appearance Wide range of poses

A robust feature set Discriminate cleanly

Cluttered backgrounds Different illumination

3

Introduction Edge orientation histograms

Scale-invariant feature transform (SIFT) Shape context

4

Shape contextSIFT

Introduction Using linear SVM as a baseline classifier Using detection error tradeoff (DET) Data Sets

MIT pedestrian set INRIA pedestrian set

5

Methodology Data Sets

MIT pedestrian database 509 training images 200 test images

INRIA 1805 64X128 images

6

Methodology

7

1 2 3 4 5

6 7 8 9 10

Methodology Training examples 12180+ examples

2478 Positive 1218 Negative

8

Methodology Detection error tradeoff

X-axes False Positives Per Window tested(by 5% at 10-4) FPPW=

Y-axes Miss rate=

Log-log scale

9

Methodology

10

Gamma/Color Normalization Inputting pixel representations

Grayscale RGB color spaces LAB color spaces

Power law (Gamma equalization)

11

LAB Color Spaces

12

 Xn, Yn and Zn are the CIE XYZ tristimulus values of the reference white point

Power Law (Gamma equalization) Tradition

13

IGray(i, j) is the gray-level imageIEq (i, j) is the image which performed equalization IMax and IMin are the maximum and minimum of the pixel values of IGray(i, j)

Power Law (Gamma equalization)

14

i is the i-th gray levelL is the low-boundR is the actual equalization rangeGE (i) is the result of the i-th gray level obtained from gamma equalization

Power Law (Gamma equalization)

15

Gradient Computation Masks test(for each color channel)

Gaussian (σ=0~3) 1-D point derivatives[-1,0,1] Cubic-corrected[1,-8,0,8,-1] 3X3 Sobel mask

2X2 diagonal ones

16

Gradient Computation

17

‘c-cor’ is the 1D cubic-correctedpoint derivative

Spatial / Orientation Binning Orientation bins are evenly spaced

0 °~180 ° 0 °~360 °

18

Spatial / Orientation Binning

19

Normalization and Descriptor Blocks

20

Normalization and Descriptor Blocks

21

Normalization and Descriptor Blocks

22

Block Normalization schemes (limiting the maximum values of

v to 0.2) and renormalizing

Centre-surround normalization Window norm(using Gaussian σ=1)

v is the unnormalized descriptor vector is a small constant

Normalization and Descriptor Blocks

23

Normalization and Descriptor Blocks

24

Illumination and foreground-background contrast overlap

Normalization and Descriptor Blocks

25

Detector Window and Context

26

Classifier Using linear SVM(Support vector machine) Increasing performance

Using a Gaussian kernel Higher run time

27

Classifier

28

Using a Gaussian kernel SVM,

Results

29

Results

30

Results

31

The performance of selected detectors on (left) MIT and (right) INRIA data sets.

Discussion HOG outperform wavelet & shape context Traditional centre-surround style schemes

are not the best choice Similar to SIFT descriptors

32

Conclusion Scale gradients Orientation binning Relatively coarse spatial binning High-quality local contrast normalization in

overlapping descriptor blocks

33

Thank you for your attention

34