Hein Krimpenfort - MHWirth - Large Piston Diaphragm Pumps as a Feasible Alternative to Multistage...

Post on 14-Jun-2015

518 views 4 download

Tags:

description

The 4th Annual Slurry Pipelines Conference is the world's only event wholly dedicated to the operational challenges, design questions, innovations, pumps and tailings related to slurry pipelines in the mining and resources sectors. For more information on the event, please visit: http://bit.ly/1xvoBPT

Transcript of Hein Krimpenfort - MHWirth - Large Piston Diaphragm Pumps as a Feasible Alternative to Multistage...

Large piston diaphragm pumps

A feasible alternative for multistage centrifugal pumps Wirth TDPM 2500

November 11, 2014 Slide 2

About  MHWirth  

Aker Wirth GmbH MHWirth GmbH

The demand for high volume piston diaphragm pumps is increasing §  Pipeline slurry transportation is increasing §  Pipelines are getting longer §  Flow rates are getting higher

§  Flow rate of traditional piston diaphragm pumps is limited §  An impractical number of traditional piston diaphragm pumps in parallel

are required to produce high flow rates

§  MHWirth develops a high capacity piston diaphragm pump §  Based on established technology §  Proven feasibility

Background  

Proven  technology

++

700  m³/hr  at  120  bar   750  m³/hr  at  50  bar  

Triplex  double-­‐  ac=ng  pump  

1400  m³/hr  at  80  bar  

Triplex  single-­‐  ac=ng  pump  

=+

Duplex  double-­‐  ac=ng  pump  

=

Hein Krimpenfort (Aker Solutions, Germany)

Triplex  double  ac=ng  pump  

Proven  technology  

Commercial  feasibility  

Proven  feasibility  

Project  descrip=on  

Existing slurry pipeline conceptual design in Angola, Africa §  Type of slurry : iron ore tailings §  Length of pipeline : approx. 12 km §  Pipe diameter : 450 mm (OD) §  SG of slurry : 1,4 §  Slurry velocity : approx . 4,07 m/sec §  Flow rate : 2.015 m³/hr §  Required pressure : approx 6 MPa

§  Cost of energy : € 0,057/kWhr

Pipeline  profile  

Project  descrip=on  

Centrifugal  pump  system  

Design  parameters

Centrifugal  pump  system

Main  pump  sta7on     Booster  pump  sta7on    

Pipeline  profile  and  hydraulic  grade  line  

Process requirements §  Pump stations : 2 §  Agitated tailings tank : 2 (1 per station) §  GSW tank : 2 (1 per station) §  Potable GSW supply : 2 (1 per station) §  Nr. of slurry pumps : 24 (6 operating + 6 standby, per station) §  Nr. of GSW pumps : 4 (2 per pump station) §  Slurry pipeline (4 MPa) : 12 km

Centrifugal  pump  system

Process requirements

Centrifugal  pump  system

Operating train §  1 slurry feed tank §  12 slurry pumps §  2 gland seal water pumps

Standby train §  1 slurry feed tank §  12 slurry pumps §  2 gland seal water pumps

Centrifugal pump description §  Pump size : 16 x 14 §  Nr. of pumps required : 12 §  Derated head per pump : 36 m §  Derated efficiency : 63% §  Impeller tip speed : 24,5 m/sec §  Motor shaft power : 427 kW §  Total required power : 5.124 kW

§  Annual parts consumption : 25% of pump capital cost

Centrifugal  pump  system

Piston  diaphragm  pump  system  

Design parameters

Piston  diaphragm  pump  system

Main  pump  sta7on    

Pipeline profile and hydraulic grade line

Piston  diaphragm  pump  system

Process requirements §  Pump stations : 1 §  Agitated tailings tank : 1 §  GSW tank : 1 §  Potable GSW supply : 1 §  Nr. of slurry pumps : 3 (2 operating + 1 standby) §  Nr. of charge pumps : 2 (1 operating + 1 standby) §  Nr. of GSW pump : 2 (1 operating +1 standby) §  Slurry pipeline (8 Mpa) : 12 km

Process requirements

Operating pumps §  1 slurry feed tank §  2 slurry PD pumps §  1 charge pump §  1 gland seal water pump

Standby pump §  1 slurry PD pumps §  1 charge pump §  1 gland seal water pump

Piston  diaphragm  pump  system

Piston  diaphragm  pump  system

Piston diaphragm pump description §  Pump size : Wirth TDPM 2500 §  Nr. of pumps required : 2 §  Derated head per pump : 432 m §  Derated efficiency : 92% §  Stroke rate : 42 per minute §  Motor shaft power : 1.807 kW §  Total required power : 3.614 kW

§  Annual parts consumption : 5% of pump capital cost

Cost  comparison  

Capital costs

Cost  comparison  

Annual operating costs

§  Excluding costs of gland water §  Excluding maintenance labour costs

Cost  comparison  

Payback time

§  Excluding costs of gland water §  Excluding maintenance labour costs

Sensi=vity  analysis  

Annual operating costs variations: §  Cost of energy : € 0,02 – 0,10/kWh §  Cost of parts consumption : 15 – 65% (of investment of centrifugal pumps)

Payback time:

Sensi=vity  analysis  

Payback time:

Technical  feasibility  

Technical  feasibility  

Pressure – capacity relationship

§  Centrifugal pumps : §  Capacity is pressure dependent : if pressure goes up, capacity goes down

Example slurry pipeline §  Slurry flow : 1000 m³/hr §  Critical velocity : 3,5 m/sec §  Required ID : 30 cm §  Actual velocity : 3,9 m/sec §  Required pressure : 40 m

Slide 28

Centrifugal  pumps  

ID 30 cm

Velocity 3,9 m/sec

Pump curve

Slide 29

Centrifugal  pumps  

Slurry pipeline §  Pressure : 50 m §  Slurry flow : 800 m³/hr §  Critical velocity : 3,5 m/sec §  ID : 30 cm §  Actual velocity : 3,1 m/sec §  Settling of solids

Slide 30

ID 30 cm

Velocity 3,1 m/sec

Centrifugal  pumps  

Slide 31

Centrifugal  pumps  Pump curve

Slurry pipeline §  ID : 20 cm §  Pressure : 60 m §  Slurry flow : 660 m³/hr §  Critical velocity : 3,5 m/sec §  Actual velocity : 2,9 m/sec §  Settling of more solids

Slide 32

ID 20 cm

Velocity 2,9 m/sec

Centrifugal  pumps  

Slide 33

Centrifugal  pumps  Pump curve

Slide 34

Centrifugal  pumps  Pump curve

Slurry pipeline §  ID : 0 m §  Pressure : > 70 m §  Slurry flow : 0 m³/hr §  Critical velocity : 3,5 m/sec §  Actual velocity : 0 m/sec §  Blocked pipeline

Slide 35

Centrifugal  pumps  

Technical  feasibility  

Pressure – capacity relationship

§  Positive displacement pumps : §  Capacity is pressure independent : if pressure goes up, capacity is constant

Capacity - pressure §  Capacity is constan at all discharge pressures §  Capacity depends on stroke rate §  If stroke rate increases, capacity increases proportionally §  No pump curve, efficiency is not affected

§  Limiting factor for pressure : §  installed power §  Design pressure of slurry end components (diaphragm housings,

cylinder) §  rod load of crankshaft

§  Limiting factor for capacity : §  Installed power §  maximum stroke rate

Slide 37

Piston  diaphragm  pumps  

Slurry pipeline example §  Slurry flow : 1000 m³/hr §  Critical velocity : 3,5 m/sec §  Required ID : 30 cm §  Actual velocity : 3,9 m/sec §  Required pressure : 40 m

Slide 38

ID 30 cm

Velocity 3,9 m/sec

Piston  diaphragm  pumps  

Pump “curve”

Slide 39

Piston  diaphragm  pumps  

Slurry pipeline §  Pressure increase : 80 m §  Slurry flow : 1000 m³/hr §  Critical velocity : 3,5 m/sec §  ID : 30 cm §  Actual velocity : 3,9 m/sec §  No settling of solids

Slide 40

ID 30 cm

Velocity 3,9 m/sec

Piston  diaphragm  pumps  

Pump “curve”

Slide 41

Piston  diaphragm  pumps  

Slurry pipeline §  Pressure increase : 400 m §  Slurry flow : 1000 m³/hr §  Critical velocity : 3,5 m/sec §  ID : 30 cm §  Actual velocity : 3,9 m/sec §  No settling of solids

Slide 42

ID 30 cm

Velocity 3,9 m/sec

Piston  diaphragm  pumps  

Pump “curve”

Slide 43

Piston  diaphragm  pumps  

Minimized risk for pipeline blockage

Slide 44

Piston  diaphragm  pumps  

Applica=on  comparison  

Concentrate pipeline §  Location : Morocco §  Pipeline length : 240 km §  Type of slurry : phosphate concentrate §  Flow rate : 5000 m³/hr §  Pressure : 64 bar §  Type of pump used : centrifugal §  Number of stations : 3 §  Number of pumps : > 30 §  Absorbed power : 14.500 kW

§  Alternative : TDPM §  Number of stations : 1 §  Number of pumps : 6 (5 + 1) §  Absorbed power : 10.000 kW

Slide 46

Applica=on  comparison  

Tailings pipeline §  Location : Australia §  Pipeline length : 8 km §  Type of slurry : iron ore tailings §  Flow rate : 2200 m³/hr §  Pressure : 60 - 80 bar §  Type of pump used : centrifugal §  Number of stations : 2 §  Number of pumps : 26 ((8 + 5) x 2) §  Absorbed power : 7.800 kW

§  Alternative : TDPM §  Number of stations : 1 §  Number of pumps : 3 (2 + 1) §  Absorbed power : 5.400 kW

Slide 47

Applica=on  comparison  

§  Large piston diaphragm pumps are a feasible alternative for many multistage centrifugal pump applications

§  Depending on conditions, payback time is less than 2 years §  Wirth TDPM is based on proven technology §  Piston diaphragm pumps also offer technical advantages when

compared to centrifugal pumps

Summary  

Thank  you