Hatch fitting short_new_1

Post on 25-Jan-2015

68 views 1 download

description

age of Antarctic fish Pseudochaenichthys georgianus.

Transcript of Hatch fitting short_new_1

S Sandwich I197576 198081Germany

Catch location of Ps georgianus

Balleny

Russia200405

Kerguelen200304

Australia

Age and growth of the Antarctic fish Pseudochaenichthys

georgianus based on the otolith morphometry

Ryszard Traczyk

Shag Rock

SGeorgia I SSandwich I

S Orkney I

Elephan I

KGeorge I

Deception

Palmer A

Balleny

Kerguelen I

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Problem Age data of Antarctic fish Ps georgianus of white blood South Georgia icefishThis fish is spawning in February March and April then larvaes hatch in July Postlarvaes were cought in January

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Age data for the first 2 years is easy to set up from the observations and the catchThis fish is spawning in February March and April then larvaes hatch in July Postlarvaes were cought in January

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Fish spawning in February March and April

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

larrM

arch

Februaryndash -April

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Larvaes hatch in July

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

June ndash -August

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Postlarvaes found in January or in December have half a year

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

DecemberJanuary

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Problem Age data of Antarctic fish Ps georgianus of white blood South Georgia icefishThis fish is spawning in February March and April then larvaes hatch in July Postlarvaes were cought in January

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Age data for the first 2 years is easy to set up from the observations and the catchThis fish is spawning in February March and April then larvaes hatch in July Postlarvaes were cought in January

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Fish spawning in February March and April

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

larrM

arch

Februaryndash -April

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Larvaes hatch in July

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

June ndash -August

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Postlarvaes found in January or in December have half a year

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

DecemberJanuary

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Age data for the first 2 years is easy to set up from the observations and the catchThis fish is spawning in February March and April then larvaes hatch in July Postlarvaes were cought in January

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Fish spawning in February March and April

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

larrM

arch

Februaryndash -April

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Larvaes hatch in July

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

June ndash -August

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Postlarvaes found in January or in December have half a year

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

DecemberJanuary

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Fish spawning in February March and April

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

larrM

arch

Februaryndash -April

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Larvaes hatch in July

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

June ndash -August

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Postlarvaes found in January or in December have half a year

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

DecemberJanuary

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Larvaes hatch in July

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

June ndash -August

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Postlarvaes found in January or in December have half a year

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

DecemberJanuary

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Pseudochaenichthys georgianus NORMAN 1939 (Channichthyidae)

Postlarvaes found in January or in December have half a year

spawning hatching catchFeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I

DecemberJanuary

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

7

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

Age data from increases in hearing stones otoliths and from the observations and the catch

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

8

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

15 mm TL

009 mm R1

Hatching larvae have otolith with 01 mm of radius and 15 mm of TL

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

9

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

72 cm TL

1 mm R2

postlarvaes have 7 cm of TL their otolith have 1 mm of radius

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

10

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

Next year we can find in December

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

11

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

21 cm TL

197 mm R3

XII XII

fish with 21cm of TL their age is 16 of year their otolith have radius of 197 mm

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

12

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

From the internal otolith morphology we can findLarval Nucleus

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

13

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus otolith of hatching larvae of Ps georgianus

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

14

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

It is otolith of hatching larvae with ~01 mm R1

LarvalNucleus

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

15

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

We can find Second Primordium Second

Primordium

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

16

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

17

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

This Second Primordium growth during the year ~1 mm

SecondPrimordium

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

18

1SPR2

SP 1

is m

ark

of p

ostla

rvae

rsquos o

tolit

h

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

19

1SPR2

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

~ 1 mm Second Primordiumin otolith Ps georgianus

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

>

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

21

spawning hatching catch spawning hatching catch

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

II III IV V VI VII VIII IX X XI XII I II III IV V VI VII VIII IX X XI XII I

1SPR2

that fish have age a year more1 year growth of SecondPrimordium ~ 1 mm

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

has

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

23

001 mm

CP

LN

median plane

transverse plane

Larval Nucleus enveloped by hatching mark in otolith of Ps georgianus

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

has

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

25

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

has

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Second Primordium increases by 1 mmin otolith of Ps georgianus (age 16 y)

SEM

2 n

m p

lati

nu

m +

pa

llad

ium

Sec

ond

Pri

mor

dium

1 mm

SP

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

28

Constant growth of cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

29

Constant growth of mass cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

>

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

30

Constant growth of mass and otolith structure cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

31

Constant growth of mass and otolith structure with agecro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

>

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

32

Constant growth of mass and otolith structure with age but no growth of lengths in older fish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the

shape

freq

uen

cy

TL

cm

AGE 0 years I II III IV V VI

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

33

On the length frequency we can find 3 age groups easy to distinguish cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

34

First group are postlarvaes that have 7 cm TLcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

72 cm TL

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

35

Next age group have 21 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

21 cm TL

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

36

and the next age group have about 35 cm of Total Lengthcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

35 cm TL

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

37

We can find next age group but this age group have older examples of fish but they create pik of

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46 cm TL

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

38

If we measure otolith weight we can find that from the length frequency we couldrsquot distinguish

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

older age groups

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

39

but from the otolith mass it probably could be done The older larger fish we can distinguish age d

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from otolith mass

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

40

from the mass of otolithscro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

from the mass of otolith

>

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

41

the older fish have various otolith mass That otolith mass we can set up in 3 age groups

cro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

42

The youngest of that fish probably is at age of IVcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeIV

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

43

and their camerates are Vhellipcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeV

AgeIV

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

44

and six years oldcro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

AgeVI

AgeV

AgeIV

>

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

45

The older the larger fish we can distinguish by age datacro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

46

from the internal and external morphology but it is not easycro

ss-

secti

on

med

ial

vie

wAgeyeardays

TL

cm

OW

g

TL cm

annual rings

annual changes in the shape

freq

uen

cy

TL

cm

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Causes of errors otoliths ndash hearing stones have various kinds of

1 mm

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Causes of errors otoliths ndash hearing stones have various kinds of

rings increments

from which

1 mm

>

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

it is difficult to choose the annual increments to age determination

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

1 mm

It is problem age from the number of annual rings Ageing of Antarctic fish are commonly know as a difficultAdditionally there is lack of a clear seasonality in the Antarctic (long days in the summer and long nights in winter)

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

51

Assumption We can estimate the age by reading daily increments show up in the otolith slices as concentric rings

bdquoaccurate for fish up to 6 yr oldrdquoBROTHERS E B C P MATHEWS R LASKER 1976 DAILY GROWTH INCREMENTS IN OTOLITHS FROM LARVAL AND ADULT FISHES NY FISHERY BULLETIN VOL 74 NO 1

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

52

medialsection

Cuttings otolith in slices 002 mm thick

otolith slices after polishing the surfaces show up daily increments as concentric rings

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

53Nocturnal fish Jones CD K-H Kock E Balguerias Changes in biomass of eight species of finfish around the South Orkney Islands (subarea 482) from three bottom trawl surveys Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

larvae partJustification It was proof that the smallest in microincrements of otoliths are daily incrementshellip

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

5060708090

100110120130140150160170180190200210220230240250260270280290300

SGI postlarvae smoothed Ye

mm

arising as a result of day and night metabolic cycle in the productions of otolith matrix components

Collagen deposite net at high concentrations times10 at piks then at opposites in the cycles create dark piks

constxT

Ay ii

ii

))2

sin((9

1

fitted line Tśr = 00021 mm s = 000002

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

collagen fiber

Collagen set up cell net with

(260times12 nm)

LN matrix 3D 45 days2timestetra =

gap

surface of the layer of 17083 gaps of in one day increments

R= 011 mm

at high concentrations of

1

2

3

4 space matrix of the otolith

>

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

aragonite precipitates into gaps of colagen matrix ndash so antiphasically

CO3-2

chelate anion

2 layers CO3

-2 on 1 Ca +2

Ca +2 form tetrahedrons with

CO3

-2 as base

plates

needles

0001mm

tabletshairs

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

57

A part of cyclic changes in quantity productions components have special arrangement and orientations in the space

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

ice forming

For fish preying in the night this cycle result from locomotor activities large during the night and lower activity in the day

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Removal of aragonite from surface with 6EDTA during 1-8 min One unit of daily ring is set up from collagen ring (white grove)

2 n

m p

lati

nu

m +

pa

llad

ium 01 mm

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

60

SEM Cross-linking form a matrix of the collagen fibers

and ring

>

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

61

SEM The collagen matrix contains a gap after CaCO3

of gaps after aragonite needles removed by EDTA

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

In the other way acid remove collagen and set up in otolith matrix rings of gaps alternate

001mm

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

with rings of aragonite needles

001mm

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

technical difficulties of the methodDifficult and laborious execution of otolith slice with good visible of daily increments

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Daily increments are easy determined from otolith of up to one year old fish This means counts only up to 365 increments

median section of sagittal (8 cm SL Ps georgianus 282 days)

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

66In adult fish we need count a large number of daily increments

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

such as 3600 for fish 10 years old and it is not easy

Dorsal margin on transverse plane

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

solution use microdensitometer for measure optical densities FC ndash photocell ADC ndash Analog to Digital Converter (12 bits) SM ndash the step motor tl ndash transmitted light y ndash an average of 10-th of d (digital value of U) Sample polished sections of otolith median sagittal plane (or film negatives or SEM projections of daily increments

larrM

easu

re

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

register by photocell (FC) and record data on PC

larrM

easu

re

to automatic registration of optical density of daily increments

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

and count their peaks

>

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

0 001 002 003 004 005 006 0070

20

40

60

80

100

120

140

160

180

200

220

Optical density of 57 daily increments in otolith slice from CP to LN

mm

CP LN

LN

Ps georgianus

that are equal to number of daily increments

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

72

Ps georgianus

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

Detect the smallest cycle - daily increment in empirical data of optical density of the microscopic preparations

60

80

100

120

140

mm

Night-Day

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

73by summing 2 sets of measurements

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

(- - - - - - - -)2

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

74Being move to each other

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270 optical density along the radius of the nucleus N = 1231 measurementsfragment of 0042 mm - of 713 measurements

mm

713 measurements = 0042 mm

0

20

40

60

80

100

120

140

Night-Day

mm

mm

216

713

1

)(

nnn

xx

Ps georgianus

move the green line point by point

(- - - - - - - -)2

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

75

and finding the minima of optical density and calculation of cycle of daily increment (at move the green line by 0000941 mm)

0 001 002 003 004 005 006 007140

150

160

170

180

190

200

210

220

230

240

250

260

270

mm

(- - - - - - - -)2

0

20

40

60

80

100

120

140

Night-Day

mm

216

713

1

)(

nnn

xx

Ps georgianus

at move the green line by 0000941 mm

216

713

1min )(

nnn

xx

1 cycle = Day-Night - daily increment = 000094 mm in larvaes

= 000094 mm

relative displacement of cycles of otolith optical density by 16 measurements (by 0000941 mm) gave the first minimum of sum of squared differences = 1 cycle

1 minima

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

76

Fitted line parametersA1=447 φ1=-253 T1=0008011 A2=339 φ2=-00911 T2=0000905 A3=329 φ3=295 T3=0004427 A4=288 φ4=0516 T4=0001129 A5=236 φ5=-15 T5=0001176 A6=297 φ6=297 T6=0001502 A7=271 φ7=-244 T7=0003004 const =23511)

Daily increments = 000091 mm Detect the smallest cycle - daily increment by fit periodic functions

0 001 002 003 004 005 006 007170

180

190

200

210

220

230

240

250

260

270

optical density along the radius of the nucleus N = 1231 measurements

mm

))

2sin((

9

1

constxT

Ay ii

ii

fitted line

0 001 002 003 004215

225

235

245

255

nuc

leus

ed

ge

mm

y2 Day amp Night harmonic component =

larvaersquos part from Ps georgianus

1235)0910000910

2sin(3932 xy

to the measurenment data

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

CP

01 mm

Different width of daily increments

LN

and calculation of the number of cycles =

000

13 m

m

~ 0098 mm ~ 0032

0 001 002 003 004708090

100110120130140150160

mm

60

80

100

120

140

160

=

000

21 m

mpo

stla

rvae

par

t

larv

ae p

art

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

78

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0 001 002 003 0040

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

SGI postlarvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=360578

that are equals to number of daily increments

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00021 mm s = 000003

001 mm

postlarvae part

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

larvae part

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

80

Nocturnal fish Jones CD K-H Kock E Balguerias CHANGES IN BIOMASS OF EIGHT SPECIES OF FINFISH AROUND THE SOUTH ORKNEY ISLANDS (SUBAREA 482) FROM THREE BOTTOM TRAWL SURVEYS Hobart CCAMLR Science 2000 pp 53-74 Vol 7

The rings are evenly alternating bright with dark In 1984 microincrements were verified in 43 species of fish as daily increments

0

20

40

60

80

100

120

140

160

180

200

SGI larvae smoothed Ye

mm

minsum(yₑ-yₓ)sup2=75510

constxT

Ay ii

ii

))2

cos((9

1

fitted line Tśr = 00013 mm s = 000014

larvae part

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

81

00 02 04 06 08 10 12 14 16 18 20 220000

0002

0004

0006

0008

0010

0012

000788551401869159

0007850467289719710007009345794392

83

000834112149532710008411214953271

05

00118457943925237

000417056074766356

000928738317757009

000392523364485983

000753504672897212

000

4541

1542

1002

838

000

2554

3992

4314

105f(x) = minus 0000415921226437642 x + 00039163061118914

Rsup2 = 00241189108117597

Moving average trend line with period = PERIODRsup2 = NaN

otolith radius R9 [mm]

Rel

ativ

e op

tica

l den

sity

Oto

lith

ce

nte

r

Oto

lith

ed

ge

Average width of daily increments in the 12 daily sequences

Profile of optical density of daily increments along R9 for adults

Number of daily increments in the sequences of ~12 13 days from the center to otolith edge

Wid

th o

f dai

ly in

crem

ents

in s

eque

nces

[mm

]

(times10-3)

0

2

4

6

8

114

112

CP - center

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35CP 36

N = 450 ā = 359times10-3 plusmn 968times10-5 mm s = 492times10-5

sumn

=4

50

d

aily

in

cre

me

nts

to

oto

lith

ed

ge

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

18

12

12

12

12

13

13

12

13

12

19

12

12

12

12

13

2

1

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Larval NucleusR9=0048 mm 21 increments 24h Δ=00015 mm

check whether daily increment is unit among similar or not similar speciesHatching mark and similar width of daily increments 00014 mm (larvaes) 00023 (postlarvaes)

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

21 days larval otolith in the otolith of juvenile ~65 cm C gunnarii R9=0048 mm 21 days Δ=00015 mm postlarvae Δ=00024 mm

001 mm

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

84

C gunnarii width of daily increments from1) minimum difference in optical density 2) by fitting sinusoids to empirical data

x = 00024 mm 90)832400240

2sin(8233 xy

))2

sin((9

1

constxT

Ay ii

ii

26

6

1min )(

iii

xx

C gunnari - similar daily increments and otolith shape

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

85

C gunnari empirical records of the optical density of otoliths increments (blue line) and harmonic characteristics of the two components of periodic growth of otolith daily by cycle of 00024 mm and weekly by 0026 mm

01 011 012 013 014 015 016 017 018 019 020

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

mm

90)832400240

2sin(8233 xy

Daily increments component T3 = x = 00024 mm

85)3700260

2sin(27291 xy

Weekly harmonic component T1 = x = 00257 mm

fitting sinusoids to series of 503 measurements))2

sin((9

1

constxT

Ay ii

ii

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

86

species

CP Larval Nucleus LN [mm] Juvenile [mm] Adults Age group [mm] Age group [x1000 mm]R9 R9 width of daily increments R9 width of daily increments R9 width of daily increments width of daily increments

[mm]

Aver Min Max

Aver Min Max

Aver Min

Max I II III IV V VI

georgianus R9 0016 0098 000186 0000941 0004 088 000284 0002 0006 212 000345 0001 00055 383 279 136 045 053 081C gunnarii R9 0013 0048

00015 0001 00020427

00024 0001 0005

C aceratus R9 0008 0034 0001 00006 0002 032 00016 0001 0002 083 00015 00012 00028 15 24 17 14 14 15Sjaponicus R9 01 019 000051 036 000047 047 023 028 025 015 016Sjaponic R11 01 04 000105 098 000165 16 07 03 072 06 08McarinatusR9 0002 0057 000114 0367 000172 0765 000109 109 086 087 088 077 061McarinatusR10 0002 0039 000078 0123 000047 0241 000032 032 024 032 032 033 027McarinatusR3 0002 0114 000228 0734 000344 153 000218 218 173 173 175 154 122

Squid juv 0002 0022 0002 0002 0002 034 0005 0004 0006 Average R9 00082 00598 00015 000113 00025 04207 000235 0002 00047 10188 000163 00011 000415 1723 1571 1051 0744 0712 0770S errorSR9 000634 00326 0000435 0000602 0001 0238 000152 00014 00019 0763 000129 000014 000192 1467 1221 0618 0509 0525 0558

larwy juvenes I II III IV V VI0

0000400000000000001

0000800000000000003

00012

000160000000000001

000200000000000001

000240000000000001

000280000000000001

000320000000000001

000360000000000001

S japonicus R9

mm SGI ndash C aceratus width of increment first gt next lt on R9

SGI ndash C gunnarii width of increment larv and juv similar on R9

SGI ndash M carinatus width increm first gt then lt on R9 3 but gt for R10

SGI ndash S japonicus width all time gt on R9 but lt for R11

SGI ndash squid width all time lt on R9 Compensation narrow in height R9

with width on length R3

AgeGroup

0005 mm

The other icefish larvaes have very similar daily increments and otolith shape

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

87

Larval Nucleus on transverse plane in otolith of juvenile of Ch aceratus R9=0048 mm 31 days Δ=00015 mm

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

01 mm

24 days larval otolith in the otolith of juvenile ~76 cm C aceratus R9=0048 mm 31 days Δ=00015 mm

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

89

larval otolith r = 0024 mm in the otolith of juvenile Trematomas newnesi (after R Radke)Δ

= 00015 m

m

Δ = 0001 mm

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Compensation transition

concave surface to the convex by daily increments becaming wider

In the otolith microstructure daily microincrements show that in one directions are very narrow and in the other directions are very wide

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

Daily increments changing their matrix structure in a more concentrated within

the pressure increase

Greater p

ressure n

et comp

ressed sm

aller - a loose one

00007 mm

0001 mm

when in one directions their width are increase in the other directions are decrease

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

92

M carinatus has longer OL than C aceratus but it is not fast - it swim deeper

C aceratus

M carinatus

of pairs of radii dorsal ndash ventral and frontal- back

inversed proportions years

days

days

This sugest that mass of otolith should be constant parameter for growth of otolith

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

93

Ps georgianus from South Georgia and South Shetland I

Age from otolith mass The otolith weight frequency indicated that there were

modes with normal distributions associated with the age groups

006

4470

7

Ps georgianus Georgia Pd 1991 N=293

the frequency of otolith weight 52 class MO [g]Age group II Age group III

Age group IV Age group

VI

width class = 0001896 g

40

10

20

15

25

5

0

45

50

555 25 4515 35

TL cm

TL cm

006

0678

3

005

8782

2

002

6546

80

0284

430

007

3951

7

001

7065

8

000

9481

0

007

5847

9

007

7744

1

000

3792

4

000

7584

8

001

1377

2

001

5169

6

001

8962

0

002

2754

4

0 [

gram

]

003

0339

2

003

4131

6

003

7924

0

004

1716

4

004

5508

8

004

9301

2

005

6886

0

006

8263

1

007

2055

5

005

3093

6

000

5688

6

001

3273

4

002

0858

2

002

4650

6

000

1896

2

003

2235

4

003

6027

8

003

9820

2

004

3612

6

004

7405

0

005

1197

4

006

2574

5

006

6366

9

007

0159

3

005

4989

8

007

9640

3

Age group 0Otolith weight class containing a high intergroup breaks

Age groups divide large intergroup breaks ~ 10 times larger than the intra

Age group V

Age group I

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

94

000

0025

46

000

0002

73

000

0048

18

000

0093

64

000

0070

91

60

20

40

30

50

10

0

70

0

0001

087

000

0004

35

000

0056

52

000

0160

87

000

0213

04

000

0265

22

100

120

20

40

0

007

004

002

[g]

001

003

005

006

008

male

female

Adults Ps georgianus from S Georgia I -1990

0

005

71

006

98

007

10

006

38

006

26

006

50

006

74

006

14

006

62

006

86

=000204plusmnplusmn00000557 g

N = 132

DN=00643α= 099

χ2= 1289 7 st swobP ufn = 00749

=00173plusmnplusmn000147 gN = 172

DN=0042

α=1

χ2= 741 7 st sw

Pα=0595

N = 64

DN=0162α=0069

χ2= 1414 3 st sw

Pα=00027

=00444plusmnplusmn000717 g

N = 72

DN=0107α=039

χ2= 181 8 st swPα=0021

30

10

20

15

25

5

0

V0

0263

002

84

003

05

003

26

003

47

002

42

II

III

003

653

004

747

004

579

004

663

004

158

003

821

003

737

003

905

004

074

004

242

004

411

003

989

004

326

004

495

004

831

005

350

0547

004

87

005

11

005

59

004

99

005

23

005

820

0594

006

06

IV

002

21

001

77

001

360

0125

001

46

001

67

001

88

002

09

001

56

001

98

002

19001

2

001 001

1

000

5

000

10 0

002

000

4

000

6

000

8

000

3

000

7

000

9

0

d = 0000182 g

I

diffe

renc

e=~0

008

5 g

diffe

renc

e=~0

004

2 g

d = 000052 g

diffe

renc

e=~0

007

9 g

d = 000211 g

diffe

renc

e=~0

004

9 g

d = 000084 g

=00548plusmnplusmn000415 g

N = 114

diffe

renc

e=~0

004

5 g

d = 000119 g

=00635plusmnplusmn000335 g

N = 31

DN=0107α=039

χ2= 181 8 st swPα=0021

d = 0001194 g

=00314plusmnplusmn000367 g

000

0328

6

0

000

0114

3

000

0542

9

10

0 5

=0000343s=0000333 g

000

0071

430

0000

1429

000

0128

570

0001

8571

000

0242

860

0003

0000

000

0357

140

30

10

2015

25

50

35404550

=0000113s=0000544 g

000

0107

89

00

0000

5526

000

0160

530

0002

1316

000

0265

790

0003

1842

000

0371

06

20

10

0

=0000148s=0000148 g

2530

10

2015

5

35404550

0

000

0533

33

0

000

0255

56

000

0811

11

000

1088

88

=0000198s=0000544 g

=00000508s=00000047 g

=00000205s=0000045 g SG 198990

Age groups are separated by large distances between groups in frequency

of otolith mass

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

95

middot10-3g

0 1 2 3 4 5 6Age groups (0-6) in length class ( - TL cm) and in otolith mass class ( - MO gram) - homogeneous groups - test

oto

lith

mas

s M

O [

g]

leng

th T

L [c

m]

198788 (15 XII-04 I)

0 1 2 3 4 5 6

198889 (1-10 II)

198990 (02-29 I)

N=8003001 N=486884

N=1008605 N=5882097

F=99999

F=99999F=761999

Linfin=6339plusmn122 k=033plusmn0031 t0=-0007plusmn000054R2=098 error=1032L0=015 ϕ=312

a=2457middot10-3 plusmn5991middot10-4

b=00135 plusmn21265middot10-4

corr coef = 0963

s=3957middot10-3

Linfin=6806 plusmn0653k=029 plusmn00135t0=-0008 plusmn000012R2=098 error=732s=2702

a=3067middot10-3 plusmn435middot10-4

b=00131 plusmn1594middot10-4

corr coeff=0983R2 =9655s=325middot10-3

F=3381

Linfin=6153 plusmn066k=035 plusmn00071t0=0007 plusmn000011 L0=015R2 =099 error=431s=2074 ϕ=312

a=3524middot10-3 plusmn2065middot10-4

b=001284 plusmn2229middot10-5

corrcoef =0988

s=3191middot10-3

R =9766

F=51437 Linfin=6103 plusmn 0396k=035 plusmn00063t0=0007 plusmn000011R2 =1 error=5623s=237021

a=434middot10-3 plusmn326middot10-4

b=00127 plusmn1265middot10-4

corrcoef =0986R =9719s=3128middot10-3

F=18292

t=a+bx

t [years]

[cm]198687 (10-12 XII)N=2392812

a=3168middot10-3 plusmn 5195middot10-4

b=001282 plusmn 1756middot10-4

corr coef = 0979R2=9581s=3062middot10-3

F=4827

0-4

16

36

56

20

40

60

8076

0-4

16

36

56

20

40

60

8076

R2 =9282

0-4

16

36

56

20

40

60

8076

199091 (05-30 I)

Linfin=6545plusmn174 k=028plusmn003 t0=-0008plusmn00047R2=098 s=203 F=99999 L0=015 ϕ=308 L0=015 ϕ=313

L0=015 ϕ=312

Linfin=6347 k=032 t0=-00074 R2=099 L0=015 ϕ=311

-

a=1852middot10-4

b=00122R2=997

8687 87888586 8889 8990 9091 91921 generation of hatching in 198586

Lt=635(1-e-032(t+0007))

After confirmation that groups in otolith mass frequency differ by annual increment

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

96

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6A=8198O

W-0483R2=097

N=170

53 cm 00716 g gt0071

513 17 cm N=28

00633 00031(0063-0071)

I=31

505 13 cm N=34

0056 00025 g(0049-0063

I=26

456 18 cm N=12

00442 00025(0037-0049

I=48

346 24 cm N=54

00312 00025 g

(00257-0037I=53

Subantarctic S Georgia

10 I 79 - 29 III 79

TL=213cm s=25 cm N=41

=00171g s=00022 g

range (00124g-00257g

I=6No

ag

e g

rou

p

001

00

001

20

001

40

001

60

001

80

002

00

002

20

002

40

002

60

002

80

003

00

003

20

003

40

003

60

003

80

004

00

004

20

004

40

004

60

004

80

005

00

005

20

005

40

005

60

005

80

006

00

006

20

006

40

006

60

006

80

007

00

007

20

007

40

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

f(x) = 880481023253342 x + 0182194828364524Rsup2 = 0892079564910722

OW [g]

N

age

grou

p

Ps georgianus of South Georgia has a heavier otoliths and larger TL than from the Antarctic but increases their masses are similarSeparating indexes neighbouring peaks in the otolith frequency Igt2 and shows significant distances between age groups

the age of the fish shall be determined by weighing of otolith

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97

970 1 2 3 4 5 6 7

0 001 002 003 004 005 006 007

0

5

10

15

20

25

30

35

40

45

50

55

60

Age Group t [years]

TL cm OW=(t +05222)880481 [g]

circles - Subantarctic South Georgia I 10I1979-29III1979 Lt=661(1-e-028(t+0008)) L0=015cm N=172 R2=098 =309

squares - Antarctic Zone 30XII78-25III79 Lt=6632(1-e-026(t +00087)) L0=015 cm N=394 R2=099 =306 t=88048OW-05222 R2=089

Compare growth curves of Von Bertalanffy for Ps georgianus from Antarctic and Subantarctic Zones Small marks are the estimated age and large marks are their averages Otolith are species-specific and within species should be characterized by similar featuresGrowth curves of Bertalanffy for fish from South Georgia and from Antarctic as was to be expected are similar The earlier development of the species in warmer South Georgia giving larger body and a few months older age

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
  • Slide 69
  • Slide 70
  • Slide 71
  • Slide 72
  • Slide 73
  • Slide 74
  • Slide 75
  • Slide 76
  • Slide 77
  • Slide 78
  • Slide 79
  • Slide 80
  • Slide 81
  • Slide 82
  • Slide 83
  • Slide 84
  • Slide 85
  • Slide 86
  • Slide 87
  • Slide 88
  • Slide 89
  • Slide 90
  • Slide 91
  • Slide 92
  • Slide 93
  • Slide 94
  • Slide 95
  • Slide 96
  • Slide 97