HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug...

Post on 16-Jan-2016

217 views 1 download

Tags:

Transcript of HALE UAV Preliminary Design AERSP 402B Spring 2014 Team: NSFW Nisherag GandhiThomas Gempp Doug...

HALE UAV Preliminary Design

AERSP 402BSpring 2014

Team: NSFW

Nisherag Gandhi Thomas Gempp

Doug Rohrbaugh Gregory Snyder

Steve Stanek Victor Thomas

SAURON

Mission Statement

To design a High Altitude / Long Endurance (HALE) UAV using alternative fuel sources to support homeland security efforts with a concentration in long term border security.

Design Changesv1

v3

v2

v4

v5

v6

Sauron v7

Design Changes – Wing and Tail

Design Changes – Landing Gear

DimensionsParameter Wing Tail

Airfoil SM701 Jouk0015

Span (ft.) 128.6 18.0

Reference Chord (ft.) 4.0 2.5

Area (ft.2) 557.5 45.0

Cruise CL 0.66 0.09

Span Efficiency 1.01

Max CL 1.4

Power Generated (kW) 16.93

Aspect Ratio 29.6

Neutral Point Location (ft.) 13.4

C.G. Location (ft.) 13.2

Wing/Tail Lift Distribution

Structures – Materials

• HexPly M91 - Epoxy Matrix for primary aerospace structure

• High residual compression strength after impact (CAI)

• Supports automated manufacturing• HexTow IM10 - Carbon Fiber 12k

tow• Suitable for weaving, pre-pregging,

filament winding, braiding, and pultrusion

• Enhanced tensile properties• Highest commercially available

tensile strength

* Avg. cost: $45/lb.

M91/IM10

Structures – Materials

Epoxy-Fiber (Prepreg) Combination (M91/IM10)Theoretical Values

Cured Ply Thickness (in) ~ 0.0072

Fiber Volume (%) ~ 58.9

Laminate Density (g/cm3) ~ 1.4

Laminate Modulus (GPa) ~ 200

Tensile Strength (MPa) ~ 3620

HexTow IM10 Carbon Fiber

# of Filaments 12000

Filament Diameter (microns) 4.4

Tensile Strength (MPa) 6964

Tensile Modulus (GPa) 310

Strain (%) 2.0

Density (g/cm3) 1.79

Wing – Spar Design

Wing – Weight and Lift Distribution

Wing – Moment and Stress

Wing – Deflection

Wing Deflection Analysis

H &V Stabilizer Spar Design

Horizontal Stabilizer – Lift Distribution

H. Stabilizer – Moment and Stress

H. Stabilizer – Wing Deflection

Vertical Stabilizer – Weight and Lift Distribution

V. Stabilizer – Moment and Stress

V. Stabilizer - Deflection

Weight BreakdownAircraft Part Empty Weight (lbs)

Wing 126.89

Fuselage 32.77

Horizontal Stabilizer 10.24

Vertical Stabilizer 3.98

Solar Cell 87.53

Wing Spar 70.38

Vertical Stab Spar 0.71

Horizontal Stab Spar 1.87

4 Motors 16.00

Fuselage Formers 15.00

Gear System 40.00

Total Empty Weight 404.44

Parameter Empty Weight (lbs)

Total Empty Weight 404.44

Battery 180.00

Payload 250.00

Total 834.44

Control Surfaces

Aileron

Control Surface Area: 3%

Pcruise|61k ft = 13.8 deg/sec

Pstall|61k ft= 11.5 deg/sec

Required Aileron Deflection =10°

Elevator

Control Surface Area: 46.7%

Pitch Rate= 9 deg/sec

Required Elevator Deflection= -2.6°

Lift Coefficient, CL Elevator Deflection (°)

0.1 1.55

0.4 0.90

0.66 0.25

1.0 -0.74

1.4 -2.14

Rudder

Control Surface Area: 42.9%

Rudder Deflection: 20°

Maximum Sidewash: 10°

Max Crosswind: 12.5 ft/s

Control Surface Demo

Airfoil Selection

Wing Airfoil H&V Stabilizer Airfoil

Updated Drag Analysis

Updated Drag AnalysisSea Level 45,000 feet 61,000 feet 79,000 feet

Stall Speed (ft/s) 37.0 83.9 122.3 188.7

Cruise Speed (ft/s) 44.4 100.7 146.8 226.5

Max Speed (ft/s) 113.0 191.5 245.3 294.0

Total Drag (lbs) 18.4 20.3 22.5 26.9

Power Required (kW) 1.05 2.7 4.3 8.1

Reynolds’  Number 1,129,663.40 626,856.80 429,692.6 274,504.6

CDo 0.0087 0.01 0.0105 0.0125

Oswald’s Efficiency 0.76 0.73 0.69 0.63

Max L/D 46.7 42.4 38.2 31.9

Updated Power Analysis

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

1648 hour UAV Power Plan

Time (hours)

Pow

er (

Kilo

wa

tts)

Previous Power CalculationCurrent Power Calculation

TakeoffParameter Sea Level Denver Afghanistan

Ground Roll [ft]

Vtakeoff [ft/s]

dab|35ft [ft]

dab|50ft [ft]

Dtotal|35ft [ft]

Dtotal|50ft [ft]

Thrust [lbs]

LandingParameter Sea Level Denver AfghanistanVa [ft/s]

γa [deg]

Radius [ft]

Flare Height [ft]

Flare Speed [ft/s]

da35ft [ft]

da50ft [ft]

df [ft]

VTD [ft/s]

Thrust [lbs]

Constraint Diagram

Original

Current

Cost AnalysisFixed Costs for 5 Developmental Aircraft:

– Engineering Costs: $29,869,717.35

– Flight Test Ops: $17,638,487.67

– Tooling: $4,567,827.99

Pricing

Pricing Summary1 10 100 500 1000

Design Aircraft 5

Engineering Costs $ 29,869,717.35

Flight Test Ops $ 17,638,487.67

Tooling Costs $ 4,567,827.99

Manufacturing Costs $ 3,411,149.77 $ 14,924,534.27 $ 65,298,136.52 $ 183,206,365.99 $ 285,693,781.52

Quality Control Costs $ 490,688.06 $ 2,146,868.71 $ 9,393,025.19 $ 26,353,922.21 $ 41,096,561.54

Total Materials Costs $ 889,569.58 $ 2,223,923.96 $ 15,567,467.69 $ 74,872,106.51 $ 149,002,905.04

Design Materials Costs $ 741,307.99 $ 741,307.99 $ 741,307.99 $ 741,307.99 $ 741,307.99

Production Materials Costs $ 148,261.60 $ 1,482,615.97 $ 14,826,159.71 $ 74,130,798.53 $ 148,261,597.05

Total Frame Costs $ 60,725,386.10 $ 75,229,305.63 $ 146,192,608.09 $ 340,366,373.41 $ 531,727,226.80

Minimum Price Per UAV $ 60,725,386.10 $ 7,522,930.56 $ 1,461,926.08 $ 680,732.75 $ 531,727.23

* +$2M per for custom sensory packages

Comparison to Competitors

• RQ-1/MQ-1 Predator– Unit Cost: $4.03M– 360 Built

• MQ-9 Reaper– Unit Cost: $16.9M– 104 Built

• RQ-4 Global Hawk– Unit Cost: $131.4M– 42 Built

• Solara 50/60– Unit Cost: $1-2M– N/A Built

Questions?

14 Days ‘Til Graduation

Double Camera

Summary