Graphene ElectroMechanical Resonators · Atalaya, Isacsson and Kinaret, Nano Letters (2008) 1992...

Post on 26-Aug-2020

0 views 0 download

Transcript of Graphene ElectroMechanical Resonators · Atalaya, Isacsson and Kinaret, Nano Letters (2008) 1992...

Adrian Bachtold

Graphene ElectroMechanical Resonators

ICN, CIN2, Barcelona

Graphene

Moser (Barcelona)300 nm

Graphene Hall Bar

200nm

When going small

F = -kx

x (nm)

F (n

N)

x (nm)

F (n

N)

C Lee et al. Science 2008;321:385-388

GRAPHENE

bending rigidity

GRAPHENE

Atalaya, Isacsson and Kinaret, Nano Letters (2008)

1992 1994 1996 1998 2000 2002 2004 2006 2008 20101E-241E-231E-221E-211E-201E-191E-181E-171E-161E-151E-141E-131E-121E-111E-101E-9

Reulet

ChiuJenssenLassagne

Yang

Ekinci

OnoForsen

LavrikPoncharal

mas

s re

solu

tion

(g)

year

Cleveland .

Motivation : mass sensing

Lassagne, Garcia-Sanchez, Aguasca, Bachtold, Nano Letters 2008K. Jensen, K. Kim, and A. Zettl. Nature Nanotech 2008 Chiu, Hung, Postma, Bockrath, Nano Letters 2008

Motivation : quantum limit

mxQL

O’Connell, et al., Nature 2010

60 m

xQL ~ 2·10-17 mxQL ~ 10-11 m

1 m

)2/1( nE

seeing is believing

Garcia-Sanchez, van der Zande, San Paulo, Lassagne, McEuen, BachtoldNano Letters 8, 1399 (2008)

31 MHz

31 MHz

mixing technique – frequency modulation

V. Gouttenoire et al., Small 6, 1060 (2010)

adapted from V. Sazonova et al., Nature 431, 284 (2004)

mixing technique – frequency modulation

V. Gouttenoire et al., Small 6, 1060 (2010)

adapted from V. Sazonova et al., Nature 431, 284 (2004)

mixing technique – frequency modulation

frequency

mixingcurren

t

)Re(xfImix

V. Gouttenoire et al., Small 6, 1060 (2010)

adapted from V. Sazonova et al., Nature 431, 284 (2004)

frequency

mixingcurren

t

resonance frequency

resonance width

Qff /0

0f

)2cos(02

2

ftFkxtx

txm

02 mfQ

mkf /21

0

What a surprise !

)2cos(02

2

ftFkxtx

txm

02 mfQ

mkf /21

0

driving force

strong devia

tion

5 K

)2cos(02

2

ftFkxtx

txm

02 mfQ

mkf /21

0

frequency

shift

(kHz)

width

(Hz)

strong devia

tion

)2cos(02

2

ftFkxtx

txm

02 mfQ

mkf /21

0

frequency

shift

(kHz)

width

(Hz)

strong devia

tion

Scott Bunch, et al. Science 2007

)2cos(02

2

ftFkxtx

txm

02 mfQ

mkf /21

0

frequency

shift

(kHz)

width

(Hz)

strong devia

tion

higher order terms

Duffing forceshift

(kHz)

width

(Hz)

3xxkxxm

3xxkxxm

3222 exxdxcxxxbxax

higher order terms

shift

(kHz)

width

(Hz)

xx2

Ron Lifshitz and M.C. Cross. Review of Nonlinear Dynamics and Complexity 1 (2008) 1-52.S. Zaitsev, O. Shtempluck, E. Buks, O. Gottlieb, arXiv:0911.0833

nonlinear damping 

3xxkxxm

higher order terms

shift

(kHz)

width

(Hz)

NONLINEAR DAMPING

3/2)( ACV shift

(kHz)

width

(Hz)

xx23xxkxxm

A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, A. Bachtold, arXiv:1103.1788

hysteresis and nonlinear damping

xx23xxkxxm

02/3/ f NO hysterisis

02/3/ f hysterisis

DAMPING

xFdamping

for mechanical resonators

xFdamping

1 m 1 mm 1 m 1 nm

Paris Vienna Caltech Caltech

xxFdamping2

Ligo

high quality factor

90 mK

xxxxkxxm 23 Can we tune:

?

xxkF electroelectroelectro

Lassagne, Tarakanov, Kinaret, Garcia-Sanchez, Bachtold, Science (2009)see also: Steele, Hüttel, Witkamp, Poot, Meerwaldt, Kouwenhoven, van der Zant, Science (2009)

quantum dot

source drain

backgateoxide

as fabricated

200nm

ultra-narrow constriction

ultra-narrow constriction

0 1 2 3 40

50

100

I (m

icro

Am

ps)

Vsd (V)

Saturation current ~1microAmps per nm

source drain

backgateoxide

as fabricated

200nm

ultra-narrow constriction

ultra-narrow constriction

0 1 2 3 40

50

100

I (m

icro

Am

ps)

Vsd (V)

Saturation current ~1microAmps per nm

source drain

backgateoxide

as fabricated

200nm

ultra-narrow constriction

ultra-narrow constriction

0 1 2 3 40

50

100

I (m

icro

Am

ps)

Vsd (V)

Saturation current ~1microAmps per nm

50

25

0

-25

-50

sour

ce -

drai

n bi

as (m

V)

-1 1-0.5 0backgate bias (V)

10-4

dI/dV ( S)10

-310

-210

-1

dI/dV ( S)0 5 10

150

50

100

0

-50

-100

-150so

urce

- dr

ain

bias

(mV

)0 1 2 3 4 5 6

backgate bias (V)

Stability diagrams

J. Moser and A. Bachtold, Appl. Phys. Lett. 95, 173506 (2009)

E=25meV

• K. Todd, H.-T. Chou, S. Amasha, and D. Goldhaber-GordonNano. Lett. 9, 416 (2009)

• C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, and T. IhnPhys. Rev. Lett. 102, 056403 (2009)

• Xinglan Liu, J.B. Oostinga, A.F. Morpurgo, and L.M.K. VandersypenPhysical Review B 80, 121407 (2009)

• M.Y. Han, B. Oezyilmaz, Y. Zhang, and P. KimPhys. Rev. Lett. 98, 206805 (2007)

Models for quantum dots in constrictions

Gap betweenvalence and

conductance bands

conclusion

xxxxkxxm 23

xxkF electroelectroelectro quantum dot

R RuraliE Hernandez A San PauloF PerezS ZippilliG MorigiF AlzinaC SotomayorS Roche

MJ EsplandiuJ ChasteA EichlerB LassagneJ MoserM Zdrojek

Quantum NanoElectronics group ICN

Barcelona

EURYI, NMP RODIN, Spanish ministry

CornellA van der ZandeP McEuen

A BarreiroD GarciaM SlezinskaA GruneisA AfsharI Tsioutsios

ChalmersY TarakanovJ Kinaret

ParisM. LazzeriF. Mauri

Santa BarbaraB Thibeault

MITP Jarillo-Herrero

MunichI Wilson-Rae