Gapless Spin-Liquid Ground State in the Kagome ...nqs2017.ws/Slides/4th/Xiang.pdf1. No finite size...

Post on 20-Mar-2021

4 views 0 download

Transcript of Gapless Spin-Liquid Ground State in the Kagome ...nqs2017.ws/Slides/4th/Xiang.pdf1. No finite size...

Gapless Spin-Liquid Ground State

in the Kagome Antiferromagnets

Tao Xiang

Institute of Physics

Chinese Academy of Sciences

txiang@iphy.ac.cn

I. Brief introduction to the tensor-network states and

their renormalization

II. Tensor-network renormalization group study of the

Kagome Heisenberg model

Outline

1950 1970 1990 2010 year

Stueckelberg Gell-Mann Low

Quantum field theory

QED 1965 EW 1999 QCD 2004

Phase transition and Critical phenomena

Kadanoff Wilson

1982

Computational RG

White

Density-matrix renormalization

Tensor-network

renormalization

Road Map of Renormalization Group

| Ϋ§ =

π’Œ=𝟏

π’‚π’Œ | Ϋ§π’Œ

π’Œ=𝟏

𝑡β‰ͺ𝑡𝒕𝒐𝒕𝒂𝒍

π’‚π’Œ | Ϋ§π’Œ

I. Basic Idea of Renormalization Group

Scale transformation: refine the wavefunction by local RG transformations

To find a small but optimized set of basis states | Ϋ§π‘˜to represent accurately a wave function

Physics: compression of basis space (phase space)

i.e. compression of information

Mathematics: low rank approximation of matrix or tensor

| Ϋ§ =

π’Œ=𝟏

π’‚π’Œ | Ϋ§π’Œ

π’Œ=𝟏

𝑡β‰ͺ𝑡𝒕𝒐𝒕𝒂𝒍

π’‚π’Œ | Ϋ§π’Œ

Optimization of Basis States

To find a small but optimized set of basis states | Ϋ§π‘˜to represent accurately a wave function

RG versus Tensor-Network RG

Renormalization Group (analytical)

RG equation for charge, critical exponents and other

coupling constants at critical regime

Tensor-Network Renormalization Group

Direct evaluation of quantum wave function or partition

function at or away from critical points

Is Quantum Wave Function Compressible?

泒函数 基矒

| Ϋ§ =

π’Œ=𝟏

π‘΅π­π¨π­πšπ₯

π’‚π’Œ | Ϋ§π’Œ

basis states

𝑁total = 2𝐿2

L

L

Yes: Entanglement Entropy Area Law

S 𝑳B

A

L

泒函数 基矒

π₯𝐨𝐠𝑡

𝑡~ πŸπ‘³ << πŸπ‘³πŸ

= Ntotal

| Ϋ§ β‰ˆ

π’Œ=𝟏

𝑡β‰ͺπ‘΅π­π¨π­πšπ₯

π’‚π’Œ | Ϋ§π’Œ

basis states

Minimum number of basis states needed

for accurately representing ground states

What Kind of Wavefunction Satisfies the Area Law?

The Answer: Tensor Network States

(π‘š1, β€¦π‘šπΏ)

m1

m2

m3mL-2

mL-1

mL

…

𝒅𝑳 parameters π’…π‘«πŸπ‘³ parameters

m1 m2 m3 … … mL-1 mL

A[m2 ]

D

d

Virtual basis state

π‘š1, β€¦π‘šπΏ = π‘‡π‘Ÿπ΄ π‘š1 ⋯𝐴 π‘šπΏ

Example: Matrix Product States (MPS) in 1D

Entanglement Entropy of MPS

(π‘š1, β€¦π‘šπΏ)

m1

m2

m3mL-2

mL-1

mL

…

𝒅𝑳 parameters π’…π‘«πŸπ‘³ parameters

m1 m2 m3 … … mL-1 mL

A[m2 ]

D

d

Virtual basis state

π‘š1, β€¦π‘šπΏ = π‘‡π‘Ÿπ΄ π‘š1 ⋯𝐴 π‘šπΏ

Example: Matrix Product States (MPS)

S ~ log D

Affleck, Kennedy, Lieb, Tasaki, PRL 59, 799 (1987)

Example:S=1 AKLT valence bond solid state

A[m] :

To project two virtual

S=1/2 states, and ,

onto a S=1 state m

2

1 1

1 1 2

2 3 3i i i i

i

H S S S S

A[m]

m

virtual S=1/2 spin

A[m]

m

=

1 =1

21

2

1

1 1[ ]... [ ] ...

0 0 1 0 0 2[ 1] [0] [1]

0 12 0 0 0

L

L L

m m

Tr A m A m m m

A A A

L

m= -1,0,1

π‘₯ π‘₯′𝑇π‘₯π‘₯′𝑦𝑦′ [π‘š] =

𝑦

y'

π‘š

Physical

basis

Local

tensor

Virtual

basis

D

2D: Projected Entangled Pair State

F. Verstraete and J. Cirac, cond-mat/0407066

Physical

basis

Local

tensor

Virtual

basisD

S = L ~ L log D

Entanglement Entropy of PEPS

PEPS becomes exact in the limit D

L

PEPS versus MPS (DMRG)

PEPS is more suitable for studying large 2D lattice systems

S=1/2

Heisenberg model on

Lx Ly square lattice

Stoudenmire and White, Annu. Rev. CMP 3, 111(2012)

Reference energy: VMC

Sandvik PRB 56, 11678 (1997)

➒ Ground state wave function can be represented as

tensor-network state

➒ Partition functions of all classical and quantum lattice

models can be represented as tensor network models

Tensor Network States

d-dimensional quantum system = (d+1)-dimensional classical model

z z

i j

ij

H= -J

iz = -1, 1

Partition Function: Tensor Representation of Ising model

𝑍 = Tr exp βˆ’π»

= Tr ΰ·‘

∎

exp βˆ’π»βˆŽ

= Tr ΰ·‘

{𝑆}

π‘‡π‘†π‘–π‘†π‘—π‘†π‘˜π‘†π‘™

𝑆𝑗𝑆𝑖

π‘†π‘˜π‘†π‘™

= π‘‡π‘†π‘–π‘†π‘—π‘†π‘˜π‘†π‘™= exp βˆ’π»βˆŽ

DD2

D

𝑀π‘₯1π‘₯2 ,(π‘₯1

β€²π‘₯2β€² ),𝑦,𝑦′

(𝑛)

Higher-order singular value

decomposition (HOSVD)

Truncation:

Lower-rank approximation

How to renormalize a tensor-network model

Z. Y. Xie et al, PRB 86, 045139 (2012)

y

𝑇π‘₯,π‘₯β€²,𝑦,𝑦′(𝑛+1)

Relative difference is less than 10-5

HOTRG (D=14): 0.3295

Monte Carlo: 0.3262

Series Expansion: 0.3265

MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996).

Magnetization of 3D Ising model

Xie et al, PRB 86,045139 (2012)

Solid line: Monte Carlo data from X. M. Feng, and H. W. J. Blote, Phys. Rev. E 81, 031103 (2010)

D = 14

Specific Heat of 3D Ising model

Critical Temperature of 3D Ising model

Bond dimension

Critical Temperature of 3D Ising model

method year Tc

HOTRG D = 16

D = 23

2012

2014

4.511544

4.51152469(1)

NRG of Nishino et al 2005 4.55(4)

Monte Carlo Simulation 2010 4.5115232(17)

2003 4.5115248(6)

1996 4.511516

High-temperature expansion 2000 4.511536

II. Ground State of Kagome Antiferromagnets

Is the ground state

1. gapped or gapless?

2. quantum spin liquid?

Herbertsmithite: ZnCu3(OH)6Cl2

S=1/2 Kagome Heisenberg

Liao et al, PRL 118, 137202 (2017)

Quantum Spin Liquid

Pu

bli

cati

on

Nu

mb

er Key words: Spin Liquid

Web of

Science

Quantum spin liquid has attracted great interests in recent years

βœ“ Novel quantum state possibly with topological order

βœ“ Mott insulator without antiferromagnetic order

βœ“ Geometric or quantum frustrations are important

Herbertsmithite ZnCu3(OH)6Cl2 : Neutron scattering

Gapless spin liquid

Along the (H, H, 0)

direction, a broad

excitation continuum

is observed over the

entire range measured

Hints from Experiments

Nature 492 (2012) 406

NMR Knight shift

Gapped spin liquid

Science 360 (2016) 655

Hints from Experiments

Valence-bond Crystal

Marston et al., J. Appl. Phys. 1991

Zeng et al., PRB 1995

Nikolic et al., PRB 2003

Singh et al., PRB 2008

Poilblanc et al., PRB 2010

Evenbly et al., PRL 2010

Schwandt et al., PRB 2011

Iqbal et al., PRB 2011

Poilblanc et al., PRB 2011

Iqbal et al., New J. Phys. 2012

……

Gapped

Jiang, et al., PRL 2008

Yan, et al., Science 2011

Depenbrock, et al., PRL 2012

Jiang, et al., Nature Phys. 2012

Nishimoto, Nat. Commu. (2013)

Gong, et al., Sci. Rep. 2014

Li, arXiv 2016

Mei, et al., PRB 2017

……

Gapless

Hastings, PRB 2000

Hermele, et al., PRB 2005

Ran, et al., PRL 2007

Hermele, et al., PRB 2008

Tay, et al., PRB 2011

Iqbal, et al., PRB 2013

Hu, et al., PRB 2015

Jiang, et al., arXiv 2016

Liao, et al., PRL 2017

He, et al., PRX 2017

……

Not Spin Liquid

Kagome AFM: Theoretical Study

Spin Liquid

A question under debate for many years

Problems in the theoretical studies

Depenbrock et al, PRL

109, 067201 (2012)

-0.4379(3)

-0.4386(5)

βœ“ Density Matrix Renormalization Group (DMRG):

strong finite size effect

error grows exponentially with the system size

βœ“ Density Matrix Renormalization Group (DMRG):

strong finite size effect

error grows exponentially with the system size

βœ“ Variational Monte Carlo (VMC)

need accurate guess of the wave function

βœ“ Quantum Monte Carlo

Minus sign problem

Problems in the theoretical studies

Can we solve this problem using PEPS?

Projected Entangled Pair State (PEPS):

Virtual spins at two neighboring sites form a maximally entangled state

Local tensors

Rank-5 tensors

Can we solve this problem using PEPS?

βœ“ There is a serious cancellation in the tensor elements if three

tensors on a simplex (triangle here) are contracted

βœ“ 3-body (or more-body) entanglement is important

Max ( ) ~ 1

Max ( ) < 10-6

Cancellation in the PEPS

Max ( )

Solution: Projected Entangled Simplex States (PESS)

Projection tensor

Simplex tensor

βœ“ Virtual spins at each simplex form a maximally entangled state

βœ“ Remove the geometry frustration: The PESS is defined on the

decorated honeycomb lattice

βœ“ Only 3 virtual bonds, low cost

Z. Y. Xie et al, PRX 4, 011025 (2014)

PESS: exact wave function of Simplex Solid States

D. P. Arovas, Phys. Rev. B 77, 104404 (2008)

Example: S = 2 spin model on the Kagome lattice

A S = 2 spin is a symmetric superposition of two virtual S = 1 spins

Three virtual spins at each triangle form a spin singlet

Projection tensor

Simplex tensor

S=2 Simplex Solid State

π΄π‘Žπ‘[𝜎] =1 1 2π‘Ž 𝑏 𝜎

antisymmetric tensor

C-G coefficients

Local tensors

Projection tensor

Simplex tensor

1. No finite size effect: PESS can be defined on an infinite lattice

2. More accurate for studying large lattice size systems

3. The ground state energy converges fast with the increase of the

bond dimension D

β€’ Converge exponentially with D if the ground state is gapped

β€’ Converge algebraically with D if the ground state is gapless

This property is used to determine whether the ground state

is gapped or gapless

Advantage for using PESS

Main Difficulty in the Calculation of TNS

| Ϋ§ |Ϋ¦ βˆ— | Ϋ§

D D

D

D2

Conventional Double-Layer Contraction Approach

Computational time scales as D12

maximal D that can be handle is 13

Solution

Reduce the Cost by Dimension Reduction

| Ϋ§ |Ϋ¦ βˆ— | Ϋ§

D D

D

D

Shifted Single-Layer Approach: Nested Honeycomb Lattice

Computational time scales as D8

maximal D reaches 25

Kagome Heisenberg: Ground State Energy

Ground state energy shows a power law behavior

Question: Is D=25 large enough?

Gro

und

Sta

te E

ner

gy

E0

βœ“ Tree Structure

βœ“ Tensor renormalization is

rigorous, D can reach 1000

Gain insight for the

kagome system

Take A Reference: Husimi lattice

Same local structure

βœ“ Highly frustrated

βœ“ D is generally small

Make comparison between Kagome and Husimi results

Energy algebraically converge with the bond dimension

S=1/2 Husimi Lattice: Gapless Ground State

S = 1/2 Husimi Heisenberg model

S=1/2 Husimi Lattice: Magnetization Free

𝛼 =0.588

Mag

net

izat

oin

M

Energy converges exponentially with the bond dimension

S=1 Husimi: Gapped Ground State

Ground state: trimerized

Kagome Heisenberg: Gapless

Gro

und

Sta

te E

ner

gy

E0

Energy converges algebraically with the bond dimension

Upper bound of

the energy Gap:

less than 10-4

π‘΄π‘²π’‚π’ˆπ’π’Žπ’† < π‘΄π‘―π’–π’”π’Šπ’Žπ’Š

Magnetization: decays algebraically with D

Kagome Antiferromagnetic: Magnetic free?

Kagome Antiferromagnetic: Magnetic free?M

agnetization

Kagome Heisenberg model

The magnetic long-

range order vanishes in

the infinite D limit

The ground state of the

Kagome Heisenberg

model is a spin liquid.

Stability against other interactions

Bond dimension dependence of the magnetic order

π‘ž = 3 Γ— 3 π‘ž = 0SL

Bond dimension dependence of the magnetic order

π‘ž = 3 Γ— 3 π‘ž = 0SL

Bond dimension dependence of the magnetic order

π‘ž = 3 Γ— 3 π‘ž = 0SL

Phase Diagram

π‘ž = 3 Γ— 3 π‘ž = 0SL

Summary

➒ Tensor-network renormalization provides a powerful tool

for studying correlated many body problems

➒ The ground state of the Kagome Heisenberg model is likely

a gapless spin liquid

Haijun Liao Haidong Xie Ruizhen Huang

Institute of Physics, CAS

Bruce Normand

PSI

Zhiyuan Xie

Renmin Univ China