Fundamental electrophysics and engineering design of...

Post on 07-Jul-2020

3 views 2 download

Transcript of Fundamental electrophysics and engineering design of...

J. Hoburg 1

Fundamental electrophysics and engineering design of MAGLEV vehicles

Prof. Jim HoburgDepartment of Electrical & Computer Engineering

Carnegie Mellon University

J. Hoburg 2

Gravity

Mass

Gravity field

Force on another mass

gmf =

J. Hoburg 3

+

Electricity

Charge

Electric field

Force on another charge

Eqf =

_

J. Hoburg 4

Magnetism

Current

Magnetic field

Force on anotherCurrent segment

BXi/f =l

X

J. Hoburg 5

Magnetism (microscopic)

Microscopiccurrent loops

Magnetic field

Force on otherMicroscopiccurrent loops

NS NS

Macroscopic description ofassembly of microscopic forces:

Net force: opposite poles attract,same poles repel.

Torque: aligns to imposed field.

J. Hoburg 6

Sources −> Fields

Charge −> Electric field

Current −> Magnetic field

)0

(μBcurlJ =

)0( Ediv ερ =

J. Hoburg 7

Sources −> Fields(the whole story, including time varying fields as sources of fields)

Maxwell’s Equations

)0( Ediv ερ = )0

(0 με Bcurl

tEJ =∂∂+

)(EcurltB =∂∂−)(0 Bdiv=

J. Hoburg 8

Electromagnetic Waves

Even in a vacuum, where and :0=J0=ρ

)(0 Bdiv=

)0(0 Ediv ε= )0

(0 με Bcurl

tE =∂∂

)(EcurltB =∂∂−

J. Hoburg 9

Electromagnetic Waves(continued)

)0

(0 με Bcurl

tE =∂∂

)(EcurltB =∂∂−

mFarad1210X854.80

−=ε

mHenry610X257.10

−=μ

⎟⎠⎞⎜

⎝⎛ → Eρ

⎟⎠⎞

⎜⎝⎛ → BJ

vacuuminlightofspeedcm/s810X00.300

1===

εμ

J. Hoburg 10

What does this have to do with MAGLEV?

Same fundamental physics describes:

• Light, lasers, X-rays, … (electromagnetic spectrum, why is the sky blue?)• Wireless communications (radio, TV, cell phones, wireless computers, …)• Integrated circuits (computer chips)• Lightning• Electrostatic precipitation• Electrophotography & laser printers• Microelectromechanical systems (MEMS)• Magnetic memory (tapes, disks, MRAM, magnetic stripes, …)• Rotating electrical machinery (generators & motors)• Linear synchronous motor (LSM)• Magnetic confinement for nuclear fusion• MAGLEV

J. Hoburg 11

Attractive magnetic levitation:“Electromagnetic levitation”

N

S

N

S

N

S

ferromagnetic material,e.g. steel:

induced magnetization

J. Hoburg 12

Attractive magnetic levitation:

z

z

f

gravitational magnetic

total

unstableequilibriumf

(inherently unstable)

J. Hoburg 13

Attractive magnetic levitation:requires feedback control system to stabilize

equilibriumexcitation

vehicleverticalposition

feedbackexcitation

Σ+

J. Hoburg 14

Repulsive magnetic levitation:“Electrodynamic levitation”

N

S

“track” of electrically conducting material,e.g. copper or aluminum:

induced current

A.C. coilon vehicle

v

permanent magneton moving vehicle

X X

J. Hoburg 15

Repulsive magnetic levitation:This interaction involves an induced electric field in the conducting material, caused by a

time-varying imposed magnetic field.

N

S

v)(Ecurl

tB =∂∂−

EJ σ=X

J. Hoburg 16

Repulsive magnetic levitation:

z

f

gravitational

magnetic

total

stableequilibrium

N

S

v

f

(inherently stable:no feedback control system needed)

X

z

J. Hoburg 17

Either mechanism can be used to levitate a vehicle

• Attractive levitation • Repulsive levitation

J. Hoburg 18

High speed (~ 450 km/hr) MAGLEV systems:

• German Transrapid:Attractive (“electromagnetic”) levitation via conventional electromagnetsLSM propulsion

• Japanese MLX:Repulsive (“electrodynamic”) levitation via superconducting magnets (on-board cryogenics)LSM propulsion

J. Hoburg 19

Transrapid Test Vehicle TR-08

Germany, 1999

J. Hoburg 20

Null Flux Suspension Vehicle MLX01

Japan, 1997 (Yamanashi test facility)

J. Hoburg 21

Low speedurban MAGLEV concept:

• Permanent (NdFeB) magnet arrays on vehicle:

Repulsive (“electrodynamic”) levitation via induced currentsin track coils

LSM propulsion

J. Hoburg 22

Halbachpermanent magnet arrays

J. Hoburg 23

(Envisioned) Pittsburgh Urban Maglev vehicle

J. Hoburg 24

Vehicle on Guideway

Linear Synchronous Motor

Suspension Track

Double Sided Magnet Array

J. Hoburg 25

Magnetic fields from known sources:

computing passenger compartment field levels

J. Hoburg 26

Halbach array fields: basic structure via magnetization charge description:

• propulsion magnet near fields (0.1 m above & below):

components & magnitude above components & magnitude below

-2 -1 0 1 2 3 4 5-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

By (red)

Bz (green)

|B| (blue)

y (m)

B in

T

By, Bz and |B| in T from propulsion magnets 0.1 m above

-2 -1 0 1 2 3 4 5-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

By (red)Bz (green)

|B| (blue)

y (m)

B in

T

By, Bz and |B| in T from propulsion magnets 0.1 m below

J. Hoburg 27

Halbach array fields: basic structure via magnetization charge description:

• propulsion magnet far fields (0.5 m above & below):

components & magnitude above components & magnitude below

-2 -1 0 1 2 3 4 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x 10-3

By (red)

Bz (green)

|B| (blue)

y (m)

B in

T

By, Bz and |B| in T from propulsion magnets 0.5 m above

-2 -1 0 1 2 3 4 5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x 10-3

By (red)

Bz (green)

|B| (blue)

y (m)

B in

T

By, Bz and |B| in T from propulsion magnets 0.5 m below

J. Hoburg 28

Halbach array fields: basic structure via magnetization charge description:

• propulsion magnet very far fields (2.0 m above & below):

components & magnitude above components & magnitude below

-2 -1 0 1 2 3 4 5-2

-1

0

1

2x 10

-5

By (red)

Bz (green)

|B| (blue)

y (m)

B in

T

By, Bz and |B| in T from propulsion magnets 2.0 m above

-2 -1 0 1 2 3 4 5-2

-1

0

1

2x 10-5

By (red)

Bz (green)

|B| (blue)

y (m)

B in

T

By, Bz and |B| in T from propulsion magnets 2.0 m below

J. Hoburg 29

Fields in passenger compartmentmagnetization charge description:

floor level contour plot seat level contour plot head level contour plot

-1 0 1-2

-1

0

1

2

3

4

5

0.00035

0.00020.0001

x (m)

y (m

)

|B| in T at floor: all magnets

-1 0 1-2

-1

0

1

2

3

4

5

0.00011

9e-0057e-005

6e-005

x (m)

y (m

)

|B| in T at seat: all magnets

-1 0 1-2

-1

0

1

2

3

4

5

3.5e-005

2.5e-005

2e-005

x (m)

y (m

)

|B| in T at head: all magnets

J. Hoburg 30

Fields in passenger compartmentmagnetization charge description:

line plots at floor, seat and head levels

-2 -1 0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10-4

floor above magnets (red)

floor along center line (green)

seat above magnets (blue) seat along center line (cyan)

head above magnets (magenta)head along center line (yellow)

y (m)

|B| i

n T

|B| in T along lines: all magnets

J. Hoburg 31

Electromechanics: computing lift & drag versus velocity

J. Hoburg 32

∫∫ •−=•SC

danHdtddlE 0μ

Δ=σ

xx

KE

λπω v2=

πλσμ

τ4

0 Δ=m

Faraday’s Law for rectangular contours in lamination planes:

Electric field related to surface currents in lamination planes:

Driving frequency based upon vehicle velocity:

Time constant for induced currents:

( )[ ]∑ ∑Λ+Λ+Λ+Λ+Λ−= abselfBAx pjE ˆˆˆˆˆˆ2 ωl

J. Hoburg 33

( )⎭⎬⎫

⎩⎨⎧

⎥⎦⎤

⎢⎣⎡ −= yvtjKiK x λ

π2expˆRe

[ ] kzjkyzya eeijiKzyH −−+−= )(

2

ˆ),(ˆ

[ ] kzjkyzyb eeijiKzyH +−++= )(

2

ˆ),(ˆ

All induced currents in laminations take the forms:

Resultant fields (above and below) any one lamination are:

J. Hoburg 34

Simultaneous equations governing induced currents in laminations:

( ) ( )

( ) ( )

( ) ( )⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

•••

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

•••

+

+

+

=

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢

•••

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

••••••••••••

•••⎟⎟⎠

⎞⎜⎜⎝

⎛+

•••⎟⎟⎠

⎞⎜⎜⎝

⎛+

•••⎟⎟⎠

⎞⎜⎜⎝

⎛+

∫∫

∫∫

∫∫

−−

−−

−−

−−

−−

−−

3

2

1

3

2/

2/3

2/

2/

2

2/

2/2

2/

2/

1

2/

2/1

2/

2/

3

2

1

ˆ

ˆ

ˆ

2

,ˆ,ˆ

,ˆ,ˆ

,ˆ,ˆ

2

ˆ

ˆ

ˆ

11

11

11

2313

2312

1312

z

z

z

BBzA

Az

BBzA

Az

BBzA

Az

m

kdkd

kd

m

kd

kdkd

m

I

I

I

pj

dxzxHdxzxH

dxzxHdxzxH

dxzxHdxzxH

pj

K

K

K

pjee

epj

e

eepj

lll

l

l

l

l

l

l

l

l

l

l

l

τω

τω

τω

J. Hoburg 35

Time-averaged lift and drag forces (per wavelength) on vehicle:

[ ] { }iyi

iBi

ByAi

Ayi

iIK

pdxzxHzxHK

pL ˆˆRe

2),(ˆ),(ˆˆRe

2*0

2/

2/

*0 ∑∫∑ −≡⎭⎬⎫

⎩⎨⎧

+−=−

λμλμλ

l

l

[ ] { }izii

BiBzAi

Azi

iIK

pdxzxHzxHK

pD ˆˆRe

2),(ˆ),(ˆˆRe

2*0

2/

2/

*0 ∑∫∑ −≡⎭⎬⎫

⎩⎨⎧

+−=−

λμλμλ

l

l

Horizontal (y) and vertical (z) field components are based upon 3-D magnetization charge description.

Complex amplitudes are based upon first Fourier components of y dependences at each value of x.

J. Hoburg 36

Double (5 above X 3 below) arrayFull 3-D magnetization charge fields:

Double (5 above X 3 below) arrayFirst Fourier component approximations:

J. Hoburg 37

Comparison with Dick Post’s model for LLNL test rig

Post: Hoburg:

J. Hoburg 38

Comparison with Dick Post’s model for LLNL test rig

Post: Hoburg:

J. Hoburg 39