From Jet Scaling to Jet Vetos - thphys.uni-heidelberg.deplehn/includes/talks/2012/atlas_12.pdf ·...

Post on 02-Sep-2019

10 views 0 download

Transcript of From Jet Scaling to Jet Vetos - thphys.uni-heidelberg.deplehn/includes/talks/2012/atlas_12.pdf ·...

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

From Jet Scaling to Jet Vetos

Tilman Plehn

Heidelberg

ATLAS Higgs-Tau Workshop, 3/2012

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet counting

Why count jets

– complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus /~pT ]

– utilize tagging and recoil jets in Higgs searches

– reduce t t and gg backgrounds

– identify decay jets in BSM searches

⇒ dσ/dnjets just another distribution to cut on?

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet counting

Why count jets

– complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus /~pT ]

– utilize tagging and recoil jets in Higgs searches

– reduce t t and gg backgrounds

– identify decay jets in BSM searches

⇒ dσ/dnjets just another distribution to cut on?

Why not [intro: arXiv:0910.4182, Springer Lecture Notes]

– remember qg → qZ

– collinear divergence from g → qq splitting [overlapping with soft divergence]Z pmaxT

pminT

dp2T

Cp2

T

= 2Z pmax

T

pminT

dpT pTCp2

T

' 2CZ pmax

T

pminT

dpT1

pT= 2C log

pmaxT

pminT

universal form following factorization

σn+1 =

Zσn

dp2a

p2a

dzαs

2πP(z)

– universally divergent, fixed order poorly defined

⇒ find object to ‘renormalize’ [i.e. absorbe universal divergence]

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet counting

Why count jets

– complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus /~pT ]

– utilize tagging and recoil jets in Higgs searches

– reduce t t and gg backgrounds

– identify decay jets in BSM searches

⇒ dσ/dnjets just another distribution to cut on?

DGLAP equation and jet-inclusive rates

– re-organize perturbation series [sum collinear logs]

σn+1(x, µ) ∼1n!

1

2πb0log

αs(µ20)

αs(µ2)

!n Z 1

x0

dxn

xnP„

xxn

«· · ·Z 1

x0

dx1

x1P„

x2

x1

«σ1(x1, µ0)

– DGLAP equivalent to ‘infrared RGE’

– factorization scale as inclusive momentum cutoff [vanishing at all orders]

σtot(µ) =

Z 1

0dx1

Z 1

0dx2

Xij

fi (x1, µ) fj (x2, µ) σij (x1x2S, µ)

⇒ collinear jets automatically included [veto on hard jets ok only if pmaxT ,j > hard scale]

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet counting

Why count jets

– complete event reconstruction crucial at LHC [Higgs plus 0,1,2 jets; jets plus /~pT ]

– utilize tagging and recoil jets in Higgs searches

– reduce t t and gg backgrounds

– identify decay jets in BSM searches

⇒ dσ/dnjets just another distribution to cut on?

DGLAP equation and jet-inclusive rates

– re-organize perturbation series [sum collinear logs]

σn+1(x, µ) ∼1n!

1

2πb0log

αs(µ20)

αs(µ2)

!n Z 1

x0

dxn

xnP„

xxn

«· · ·Z 1

x0

dx1

x1P„

x2

x1

«σ1(x1, µ0)

– DGLAP equivalent to ‘infrared RGE’

– factorization scale as inclusive momentum cutoff [vanishing at all orders]

σtot(µ) =

Z 1

0dx1

Z 1

0dx2

Xij

fi (x1, µ) fj (x2, µ) σij (x1x2S, µ)

⇒ collinear jets automatically included [veto on hard jets ok only if pmaxT ,j > hard scale]

⇒ but still...

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Poisson scaling

Theory: soft gluon radiation [Peskin & Schroeder Ch 6]

– example: photons off hard electrononly abelian diagrams, successive radiation

– eikonal approximation

Mn+1 = gsT aε∗µ(k) u(q)

qµ +O( /k)

(qk) +O(k2)Mn

– factorization of ‘hard process’ and soft radiation factors

– Poisson distribution [normalized pdf for n if n expected]

σn =nne−n

n!⇐⇒ R(n+1)/n =

σn+1

σn=

nn + 1

Basis of Poisson distribution

1– radiation matrix element nn:abelian fine, non-abelian a little tricky [ISR-FSR, see Ioffe, Fadin, Lipatov]

2– phase space factor 1/n!:only combinatorics, matrix element ordered [angular ordering, color suppression]

3– normalization factor e−n

– just like parton shower in collinear regimes

s

s

1/pT

1/pT

1/pT

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

– W/Z+jets production– many equivalent descriptions

R(n+1)/n =σn+1

σn= const

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

– W/Z+jets production– many equivalent descriptions

R(n+1)/n =σn+1

σn= const

– same for inclusive and exclusive rates [Blackhat-Sherpa]

R incl(n+1)/n =

P∞j=n+1 σ

(excl)j

σ(excl)n +

P∞j=n+1 σ

(excl)j

= Rexcl(n+1)/n

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

– W/Z+jets production– many equivalent descriptions

R(n+1)/n =σn+1

σn= const

– same for inclusive and exclusive rates [Blackhat-Sherpa]

R incl(n+1)/n =

P∞j=n+1 σ

(excl)j

σ(excl)n +

P∞j=n+1 σ

(excl)j

= Rexcl(n+1)/n

– confirmed by ATLAS/CMS

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

– W/Z+jets production– many equivalent descriptions

R(n+1)/n =σn+1

σn= const

– same for inclusive and exclusive rates [Blackhat-Sherpa]

R incl(n+1)/n =

P∞j=n+1 σ

(excl)j

σ(excl)n +

P∞j=n+1 σ

(excl)j

= Rexcl(n+1)/n

– confirmed by ATLAS/CMS

Theoretical studies [Englert, TP, Schichtel, Schumann]

– CKKW/MLM merging [we used Sherpa]

– phase space effects? → moderate

– αs uncertainties? → small

– scale uncertainties? → tuning parameter?jetsn

2 3 4 5 6

jets

dndN

210

310

410

510

610

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

jetsn2 3 4 5 6

jets

dndN

210

310

410

510

610

jetsn2 3 4 5 6

var

iati

onsα

0.5

1

1.5 theoretical uncertainty

statistical uncertainty

jetsn2 3 4 5 6

var

iati

onsα

0.5

1

1.5

jetsn2 3 4 5 6

var

iati

onµ

1

10

jetsn2 3 4 5 6

var

iati

onµ

1

10

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Staircase scaling

Experiment: from UA1 to ATLAS/CMS [Steve Ellis, Kleiss, Stirling]

– W/Z+jets production– many equivalent descriptions

R(n+1)/n =σn+1

σn= const

– same for inclusive and exclusive rates [Blackhat-Sherpa]

R incl(n+1)/n =

P∞j=n+1 σ

(excl)j

σ(excl)n +

P∞j=n+1 σ

(excl)j

= Rexcl(n+1)/n

– confirmed by ATLAS/CMS

Theoretical studies [Englert, TP, Schichtel, Schumann]

– CKKW/MLM merging [we used Sherpa]

– phase space effects? → moderate

– αs uncertainties? → small

– scale uncertainties? → tuning parameter?

– same for QCD jets

– correctly described by ME-PS merging!?

jetsn2 3 4 5 6

jets

dndN

410

510

610

710

810

910

1010

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

QCD

µQCD, 1/4

µQCD, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

QCD

µQCD, 1/4

µQCD, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

QCD

µQCD, 1/4

µQCD, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

QCD

µQCD, 1/4

µQCD, 4

jetsn2 3 4 5 6

jets

dndN

410

510

610

710

810

910

1010

jetsn2 3 4 5 6

var

iati

onsα 0.8

1

1.2 theoretical uncertainty

statistical uncertainty

jetsn2 3 4 5 6

var

iati

onsα 0.8

1

1.2

jetsn2 3 4 5 6

var

iati

onµ 1

10

210

jetsn2 3 4 5 6

var

iati

onµ 1

10

210

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Interpolating scaling patterns

Scaling for photon plus jets [Englert, TP, Schichtel, Schumann]

– naively, no scaling at all [CMS, private complaint]

– after appropriate cuts, great playground

1– staircasedemocratic γ and jet acceptancelarge γ-jet separation [m or ∆R, no large logs]

no reason for ordered emission [1/n! in Poisson form]

dominant: non-abelian splitting of ISR gluonhelping: pdf effect shifting to high-njets

2/1 3/2 4/3 5/4 6/5 7/6

nn+

1R

0

0.1

0.2

0.3

0.4

0.5

=-0.0064dndR

=0.15970R> 70 GeV, ,jγm

=-0.0007dndR

=0.14880R> 90 GeV, ,jγm

=0.0029dndR

=0.14070R>110 GeV, ,jγm

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Interpolating scaling patterns

Scaling for photon plus jets [Englert, TP, Schichtel, Schumann]

– naively, no scaling at all [CMS, private complaint]

– after appropriate cuts, great playground

1– staircasedemocratic γ and jet acceptancelarge γ-jet separation [m or ∆R, no large logs]

no reason for ordered emission [1/n! in Poisson form]

dominant: non-abelian splitting of ISR gluonhelping: pdf effect shifting to high-njets

2/1 3/2 4/3 5/4 6/5 7/6

nn+

1R

0

0.1

0.2

0.3

0.4

0.5

=-0.0064dndR

=0.15970R> 70 GeV, ,jγm

=-0.0007dndR

=0.14880R> 90 GeV, ,jγm

=0.0029dndR

=0.14070R>110 GeV, ,jγm

2– Poissongenerate ‘hard process’ [m, pT ,∆R, ...]

lower general pminT for soft-collinear logarithm

rely on lot-enhanced radiation

dominant: successive ordered ISRremaining: high-n staircase tail

⇒ staircase–Poisson transition tunable!

2/1 3/2 4/3 5/4 6/5 7/6 8/7n

n+1

R0

0.5

1

1.5 =1.7138n

=0.01310R>100 GeV,

T,j1p

=2.361n

=-0.05090R>150 GeV,

T,j1p

=2.6287n

=-0.05360R>200 GeV,

T,j1p

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

– particularly useful for WBF signals [remove t t and Z+jets backgrounds]

– veto central (semi-hard) jetsestimate Pvetoapply as ‘efficiency factor’

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

– particularly useful for WBF signals [remove t t and Z+jets backgrounds]

– veto central (semi-hard) jetsestimate Pvetoapply as ‘efficiency factor’

– implicit in LHC Higgs searchesindividual searches for exclusive fixed njets

– problem in Higgs phenomenology [mine for more than 10 years]

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

– particularly useful for WBF signals [remove t t and Z+jets backgrounds]

– veto central (semi-hard) jetsestimate Pvetoapply as ‘efficiency factor’

– implicit in LHC Higgs searchesindividual searches for exclusive fixed njets

– problem in Higgs phenomenology [mine for more than 10 years]

Using jet counting [Gerwick, TP, Schumann]

– avoid Pveto as single number

– study exclusive njets distribution:1– understand basic features:

staircase for inclusive samplesPoisson for radiation processes

2– predict from theory [including error]

3– validate simulation4– estimate alowed parameter range5– extrapolate to Higgs

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Jet veto in Higgs analyses [Barger, Phillips, Zeppenfeld; Rainwater]

– particularly useful for WBF signals [remove t t and Z+jets backgrounds]

– veto central (semi-hard) jetsestimate Pvetoapply as ‘efficiency factor’

– implicit in LHC Higgs searchesindividual searches for exclusive fixed njets

– problem in Higgs phenomenology [mine for more than 10 years]

Using jet counting [Gerwick, TP, Schumann]

– avoid Pveto as single number

– study exclusive njets distribution:1– understand basic features:

staircase for inclusive samplesPoisson for radiation processes

2– predict from theory [including error]

3– validate simulation4– estimate alowed parameter range5– extrapolate to Higgs

staircase scaling Poisson scaling

σn σ0 e−bn σtote−n nn

n!

Rexcl(n+1)/n e−b n

n + 1

Rincl(n+1)/n e−b

0@ (n + 1) e−n n−(n+1)

Γ(n + 1) − nΓ(n, n)+ 1

1A−1

〈njets〉1

2

1

cosh b − 1n

Pveto 1 − e−b e−n

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Example: WBF H → ττ [Gerwick, TP, Schumann]

– staircase scaling before WBF cuts [QCD and e-w processes]

– first emission sensitive to cuts

– e-w Zjj production with too many structures

1

n!/n+1!-1 0 1 2 3 4 5 6

) n!/

n+1

!R(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Higgs gluon fusion

Z QCD

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R(n

+1)

/n

n + 1

n

1/0 2/1 3/2 4/3 5/4 6/5

1

n!/n+1!-1 0 1 2 3 4 5 6

) n!/

n+1

!R(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Higgs WBF

Z EW

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R(n

+1)

/n

n + 1

n

1/0 2/1 3/2 4/3 5/4 6/5

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Example: WBF H → ττ [Gerwick, TP, Schumann]

– staircase scaling before WBF cuts [QCD and e-w processes]

– first emission sensitive to cuts

– e-w Zjj production with too many structures

Forward tagging jets

– count add’l veto jets to reduce backgrounds

pvetoT > 20 GeV min y1,2 < yveto

< max y1,2

– Poisson for QCD processes [‘radiation’ pattern]

1

n!/n+1!-1 0 1 2 3 4 5

) n!/

n+1

!R(

0

0.5

1

1.5

2

2.5

Higgs gluon fusion

Z QCD

n(Z QCD) = 1.42

n(Higgs gg fusion) = 1.80

0.5

1.0

1.5

2.0

2.5

R(n

+1)

/n

n + 1

n

1/0 2/1 3/2 4/3 5/4

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Jet veto in Higgs searches

Example: WBF H → ττ [Gerwick, TP, Schumann]

– staircase scaling before WBF cuts [QCD and e-w processes]

– first emission sensitive to cuts

– e-w Zjj production with too many structures

Forward tagging jets

– count add’l veto jets to reduce backgrounds

pvetoT > 20 GeV min y1,2 < yveto

< max y1,2

– Poisson for QCD processes [‘radiation’ pattern]

– staircase-like for e-w processes [generic]

– features of njets distributions understood

⇒ cut on njets fine, your job now1

n!/n+1!-1 0 1 2 3 4 5

) n!/

n+1

!R(

0

0.5

1

1.5

2

2.5

Higgs gluon fusion

Z QCD

n(Z QCD) = 1.42

n(Higgs gg fusion) = 1.80

0.5

1.0

1.5

2.0

2.5

R(n

+1)

/n

n + 1

n

1/0 2/1 3/2 4/3 5/4

1

n!/n+1!-1 0 1 2 3 4 5

) n!/

n+1

!R(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Higgs WBF

Z EW

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R(n

+1)

/n

n + 1

n

1/0 2/1 3/2 4/3 5/4

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

– theory:Higgs portal? [φ†φ gauge singlet]

γγH and ggH couplings w/o naive decouplingSUSY or strongly interacting Higgs simple coupling measurements

– experiment:Higgs decays to fermions crucialassociated Higgs-jet channels/WBF crucial

– current observables: σ × BRmore relevant: gjjH

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

– theory:Higgs portal? [φ†φ gauge singlet]

γγH and ggH couplings w/o naive decouplingSUSY or strongly interacting Higgs simple coupling measurements

– experiment:Higgs decays to fermions crucialassociated Higgs-jet channels/WBF crucial

– current observables: σ × BRmore relevant: gjjH

Dedicated parameter analysis in progress [SFitter+Duhrssen, Klute]

– general fit of all couplings [Moriond 2012]

gjjH = gSMjjH`1 + ∆j

´– prelim: SM central values, proper errors

– pre-Moriond

0

0.5

1

1.5

2

110 115 120 125 130 135 140 145 150

mH [GeV]

68% CL ATLAS+CMS

∆W∆Z∆t∆b∆

τ∆H

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

– theory:Higgs portal? [φ†φ gauge singlet]

γγH and ggH couplings w/o naive decouplingSUSY or strongly interacting Higgs simple coupling measurements

– experiment:Higgs decays to fermions crucialassociated Higgs-jet channels/WBF crucial

– current observables: σ × BRmore relevant: gjjH

Dedicated parameter analysis in progress [SFitter+Duhrssen, Klute]

– general fit of all couplings [Moriond 2012]

gjjH = gSMjjH`1 + ∆j

´– prelim: SM central values, proper errors

– pre-Moriondend of 2012

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

110 115 120 125 130 135 140 145 150

mH [GeV]

68% CL ATLAS+CMS

∆W∆Z∆t∆b∆

τ∆H

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

– theory:Higgs portal? [φ†φ gauge singlet]

γγH and ggH couplings w/o naive decouplingSUSY or strongly interacting Higgs simple coupling measurements

– experiment:Higgs decays to fermions crucialassociated Higgs-jet channels/WBF crucial

– current observables: σ × BRmore relevant: gjjH

Dedicated parameter analysis in progress [SFitter+Duhrssen, Klute]

– general fit of all couplings [Moriond 2012]

gjjH = gSMjjH`1 + ∆j

´– prelim: SM central values, proper errors

– pre-Moriondend of 2012assuming mH = 125 GeV

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆H

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆Z/W

∆τ/b

∆b/W

gj = gjSM

(1+∆j)

68% CL: ATLAS + CMS

7 TeV, 20 fb-1

14 TeV, 30 fb-1

no D5

14 TeV, 30 fb-1

with D5

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Higgs couplings

Veto probabilities crucial for coupling extraction [SFitter: Lafaye, TP, Rauch, Zerwas (2009ff)]

– theory:Higgs portal? [φ†φ gauge singlet]

γγH and ggH couplings w/o naive decouplingSUSY or strongly interacting Higgs simple coupling measurements

– experiment:Higgs decays to fermions crucialassociated Higgs-jet channels/WBF crucial

– current observables: σ × BRmore relevant: gjjH

Dedicated parameter analysis in progress [SFitter+Duhrssen, Klute]

– general fit of all couplings [Moriond 2012]

gjjH = gSMjjH`1 + ∆j

´– prelim: SM central values, proper errors

– pre-Moriondend of 2012assuming mH = 125 GeV

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

∆H

∆W

∆Z

∆t

∆b

∆τ

∆γ

∆g

∆Z/W

∆τ/b

∆b/W

gj = gjSM

(1+∆j)

68% CL: ATLAS + CMS

7 TeV, 20 fb-1

14 TeV, 30 fb-1

no D5

14 TeV, 30 fb-1

with D5

⇒ LHC task for coming years

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

– obviously sensitive to new physics massesbut awful variable, after theory uncertainty

– correlation meff ∼ 〈pT 〉 × njets

– use merged sample for meffestimate scale and αs uncertainties

[GeV]effm200 400 600 800

[1/

100

GeV

]ef

fdmdN 310

410

510

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

2≥ jn

> 50 GeVT, j

p

-1L = 1 fb

W+jets

µW+jets, 1/4

µW+jets, 4

[GeV]effm200 400 600 800

[1/

100

GeV

]ef

fdmdN 310

410

510

[GeV]effm200 400 600 800

var

iati

onsα 0.9

1

1.1 theoretical uncertainty

statistical uncertainty

[GeV]effm200 400 600 800

var

iati

onsα 0.9

1

1.1

[GeV]effm200 400 600 800

var

iati

onµ

1

10

[GeV]effm200 400 600 800

var

iati

onµ

1

10

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

– obviously sensitive to new physics massesbut awful variable, after theory uncertainty

– correlation meff ∼ 〈pT 〉 × njets

– use merged sample for meffestimate scale and αs uncertainties

– estimate SUSY significance as function of meff

[GeV]effm200 400 600 800 1000 1200 1400

[1/

100

GeV

]ef

fdmdN

-210

-1101

10

210

310

410

510 signalleptonictt

hadronicttW+jetsZ+jetsQCD

[GeV]effm200 400 600 800 1000 1200 1400

[1/

100

GeV

]ef

fdmdN

-210

-1101

10

210

310

410

510

[GeV]effm200 400 600 800 1000 1200 1400

BS+

B

0.5

1

1.5

2

2.5

3

= 2jn

-1L = 1 fb

[GeV]effm200 400 600 800 1000 1200 1400

BS+

B

0.5

1

1.5

2

2.5

3 [GeV]effm200 400 600 800 1000 1200 1400

[1/

100

GeV

]ef

fdmdN

-210

-1101

10

210

310

410

510 signalleptonictt

hadronicttW+jetsZ+jetsQCD

[GeV]effm200 400 600 800 1000 1200 1400

[1/

100

GeV

]ef

fdmdN

-210

-1101

10

210

310

410

510

[GeV]effm200 400 600 800 1000 1200 1400

BS+

B

0.5

1

1.5

2

2.5

3

= 3jn

-1L = 1 fb

[GeV]effm200 400 600 800 1000 1200 1400

BS+

B

0.5

1

1.5

2

2.5

3

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

– obviously sensitive to new physics massesbut awful variable, after theory uncertainty

– correlation meff ∼ 〈pT 〉 × njets

– use merged sample for meffestimate scale and αs uncertainties

– estimate SUSY significance as function of meff

– multijet studies establishing meff

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

New physics

Effective mass [Englert, TP, Schichtel, Schumann]

– obviously sensitive to new physics massesbut awful variable, after theory uncertainty

– correlation meff ∼ 〈pT 〉 × njets

– use merged sample for meffestimate scale and αs uncertainties

– estimate SUSY significance as function of meff

– multijet studies establishing meff

Mass vs color charge

– now, significance as function of njets

– representing new physics color charge [gluino does not decay via gluon]

– exclusive 2D likelihood including all information

2 3 4 5 6nj0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6meffHTeVL

SPS1a, 1 inverse fb

2 3 4 5 6nj0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6meffHTeVL

SPS1a, squarks+squarks, 1 inv. fb

2 3 4 5 6nj0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6meffHTeVL

SPS1a, squarks+gluino, 1 inv. fb

3.2Σ

2 3 4 5 6nj0.2

0.4

0.6

0.8

1.

1.2

1.4

1.6meffHTeVL

SPS1a, gluino+gluino, 1 inv. fb

0.6Σ

Jet Scaling

Tilman Plehn

Counting jets

Poisson

Staircase

Interpolating

Jet veto

Higgs couplings

New physics

Exclusive jet counting

staircase (non-abelian) vs Poisson (ordered)

– start by measuring dσ/dnjets

– test both regimes in photon+jets

– test ME-PS merging [CKKW/MLM, unchanged by NLO]

– key to jet vetos

– key to coupling measurements [SFitter+friends]

Understanding Jet Scaling and Jet Vetos in Higgs SearchesE Gerwick, TP, S SchumannPRL 108 (2012)

Establishing Jet Scaling Patterns with a PhotonC Englert, TP, P Schichtel, S SchumannarXiv:1108.5473, JHEP in print

Jets plus Missing Energy with an AutofocusC Englert, TP, P Schichtel, S SchumannPRD83 (2011)

Much of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work