Filters and other potions - LCSLlcsl.mit.edu/ldr-workshop/Slides/Perona_LDR_MIT_112213.pdf ·...

Post on 27-Aug-2018

217 views 0 download

Transcript of Filters and other potions - LCSLlcsl.mit.edu/ldr-workshop/Slides/Perona_LDR_MIT_112213.pdf ·...

Filters and other potionsP. Perona - Caltech

MIT - 21 November 2013

? whatwhere

Architectures

Architecture 1

Image(s)

The vision black box

Ripe bananas

Marble torso

train

build

ing

Feature extraction: texture

stereo disparity color contrast motion flow

edgels ….

Surface shape, scene depth,

spatial relationships, 3D motion

Grouping: image regions

Perceptual organization: 2.5D sketch:

boundaries, junctions, foregrnd, bckgrnd

Recognition, surface properties

Image processing Regions and surfacesObjects, verbs, categories…

motor

cognition

[Marr ’82]

features?

Le Corbusier, Villa Savoyehttp://flickr.com/photos/ikura/1398271367/

edges

http://www.iit.edu/~stawraf/perspx.jpgLe Corbusier, Villa Savoye

[Fukushima ‘80]

Architecture 2

[DeValois ’85]

Column

Hypercolumn

Dense sampling

translation, rotation invariance

[LeCun et al. 1998]

scale invariance

[Lowe 2004]

[Hinton et al. ’12]

translation, rotation, scale invariance

96 filters 6 orientations 2 center-surround 14 scale samples over 2.2 binary octaves

Detection Performance

Caltech pedestrians: 1M frames, 250K hand-annotated

Detection Performance

Detection Performance

Dollar et al. ‘10Dollar et al. ‘08

Viola & Jones ‘01

Dalal-Triggs ‘05 *

Walk et al. ‘10

filter technology

Scale, orientation, elongation…. lots of CPU cycles

how do we make computations efficient?

Separability

[Adelson & Bergen, ’85]Cost = m x n Cost = m + n

R(i, j) =X

h=1:M,k=1:N

k(h, k)I(i� h, j � k) R(i, j) =X

h=1:M

X

k=1:N

k(h)k0(k)I(i� h, j � k)

Separability and decomposition

[Adelson & Bergen, ’85]

Steerability

[Freeman & Adelson, ’91]

General decomposition

k(x, ✓) =DX

i=1

bi(✓)fi(x)

k(x, y) =DX

i=1

fi(x)gi(y)

k(x, y; ✓) =DX

i=1

bi(✓)fi(x)gi(y)

Design?

x

=k(x; ✓)

D

bi(✓)

x

�i,i

fi(x)

A = USV T

ApproximationK(x, y; ✓) =

DX

i=1

bi(✓)fi(x, y)

K(x, y; ✓) ⇡RX

i=1

bi(✓)fi(x, y) R ⌧ D

[Perona ’95]

[Perona ’95]

[Perona ’95]

Tensor Factorization

k(x, y; ✓) =DX

i=1

bi(✓)fi(x)gi(y)

•Not a convex problem •Gradient descent

[Shy, Perona ’96]

Including scale by resampling

[Manduchi et al. ’98][cfr. Simoncelli et al]

Exploiting Image Statistics

original

upsampled

sampling the gradient

[Dollar et al. 2013]

Gradient histograms[Dollar et al. 2013]

Power law feature scaling

Power law feature scaling

Individual images

[Dollar et al. 2013]

Fast computations

Fast computations

[Dollar et al. 2013]

Performance

[Dollar et al. 2013]

Conclusions• Filtering front-end

• Need fine sampling of scale, orientation, …

• Scalable, separable and steerable approximations

• Exploiting image statistics to extrapolate

• Fast and accurate detection