Fig. 8.16b

Post on 04-Jan-2016

28 views 0 download

description

Fig. 8.16b. Fig. 8.16a. Fig. 8.16c. CO 8. Fig. 8.1. Fig. 8.2. Fig. 8.3. Fig. 8.4. Fig. 8.5. Fig. 8.6. Fig. 8.7. Table 8.1. Fig. 8.8. Fig. 8.9. Fig. 8.10. Fig. 8.11. Fig. 8.23. Fig. 8.12. Fig. 8.18. Fig. 8.13. Fig. 8.14a-d. 0069. 0070. Fig. 8.14e. Fig. 8.15a-f. Fig. 8.15g. - PowerPoint PPT Presentation

Transcript of Fig. 8.16b

GEOLOGIC TIME

RELATIVE TIME

1. Original horizontality 2. Superposition 3. Cross-cutting relationships 4. Correlation

a. physical similarities b. use of fossils

index fossil = short-lived species that led to a more evolved species, widely distributed and plentiful

Fig. 8.16b

Fig. 8.16a

Fig. 8.16c

CO 8

Fig. 8.1

Fig. 8.2

Fig. 8.3

Fig. 8.4

Fig. 8.5

Fig. 8.6

Fig. 8.7

Table 8.1

Fig. 8.8

Fig. 8.9

Fig. 8.10

Fig. 8.11

Fig. 8.23

Fig. 8.12

UNCONFORMITY (missing time—rocks)

1. Dis-

3 and 4 missing

2. non-

3. angular

1 2 5 6

x x x x x x x x

x x x x

Fig. 8.18

Fig. 8.13

Fig. 8.14a-d

0069

0070

Fig. 8.14e

Fig. 8.15a-f

Fig. 8.15g

0071

0072

0068

0067

Fig. 8.17

Fig. 8.19

ABSOLUTE TIME

1. Radiometric dating requirements a. must have a radioactive

element (parent-P) that decays to a daughter element (D)

b. there is not removal or introduction of P or D

c. disintegration rate must be known and assumed to be constant over time

d. the half-life of the parent must be long enough to allow for age determinations (half-life = time for ½ of the P to disintegrate)

Fig. 8.20

Fig. 8.21

2. Examples of radioactivie methods

a. uranium decays to lead b. thorium decays to lead c. rubidium decays to

strontium

d. potassium decays to argon

e. carbon (14) decays to nitrogen

10 million to 4.6 billion years

500,000 to 4.6 billion years

100 to 70,000 years

1. radioactive carbon is formed when cosmic rays bombard nitrogen in the atmosphere

2. can be used only for

dating material that was once living

Example of dating method 1. assume that element

X has a half-life (t1/2) of 10 million years.

2. assume that

originally there was 100 million atoms of X present in a rock.

3. How old is the rock

if 6.25 million atoms of X is left?

Fig. 8.22

There are other absolute dating methods: 1. fission track dating 2. tree-ring dating 3. varve chronology

Atoms x 1 million of X Time (m.y.)

100 0 50 10

25 10 12.5 10 6.25 10

40

Age Era Period millions of years BP Cenozoic Quaternary 0.01 Tertiary 1.6 66.4 Mesozoic Cretaceous Jurassic Triassic 245 Paleozoic Permian Pennsylvanian Mississippian Devonian Silurian Ordovician Cambrian 570 Precambrian Proterozoic Archean 4600

Two eons—Precambrian and Phanerozoic

Fig. 8.24

Fig. 8.25