Engineering Mathematics II (2M03) Tutorial 10dmpeli.math.mcmaster.ca/TeachProjects/Math2M03/... ·...

Post on 17-May-2018

223 views 1 download

Transcript of Engineering Mathematics II (2M03) Tutorial 10dmpeli.math.mcmaster.ca/TeachProjects/Math2M03/... ·...

Engineering Mathematics II (2M03)Tutorial 10

Marina ChugunovaDepartment of Math. & Stat., office: HH403

e-mail: chugunom@math.mcmaster.ca

office hours: Math Help Centre, Thursday 1:30 - 3:30

November 15-16, 2007

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:

2

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:x = 0 is a regular singular point. (Check !) Frobenius method:

3

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:x = 0 is a regular singular point. (Check !) Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

4

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:x = 0 is a regular singular point. (Check !) Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=0

cnxn+r = 0

5

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:x = 0 is a regular singular point. (Check !) Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=0

cnxn+r = 0

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=1

cn−1xn+r−1 = 0

6

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:x = 0 is a regular singular point. (Check !) Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=0

cnxn+r = 0

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=1

cn−1xn+r−1 = 0

n = 0 : r(r − 1)c0 + rc0 = 0, r(r − 1) + r = 0, r2 = 0

7

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 14)Determine the number of power series solutions at the point x = 0 forthe ODE:

xy′′ + y′ + 10y = 0.

Solution:x = 0 is a regular singular point. (Check !) Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=0

cnxn+r = 0

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 +

∞∑n=0

(n + r)cnxn+r−1 + 10

∞∑n=1

cn−1xn+r−1 = 0

n = 0 : r(r − 1)c0 + rc0 = 0, r(r − 1) + r = 0, r2 = 0

Repeated root = only one power series solution.

8

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:

9

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

10

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

11

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=0

cnxn+r+1 = 0

12

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=0

cnxn+r+1 = 0

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

13

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=0

cnxn+r+1 = 0

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

n = 0 : 2r(r − 1)c0 + 5rc0 = 0, 2r2 + 3r = 0, r1 = 0, r2 = −3

2

14

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 16)Find two power series solutions at the point x = 0 for the ODE:

2xy′′ + 5y′ + xy = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=0

cnxn+r+1 = 0

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

n = 0 : 2r(r − 1)c0 + 5rc0 = 0, 2r2 + 3r = 0, r1 = 0, r2 = −3

2

r1 − r2 =3

2it’s not an integer number (2 power series solutions)

15

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r1 = 0:

2

∞∑n=0

n(n− 1)cnxn−1 + 5

∞∑n=0

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

16

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r1 = 0:

2

∞∑n=0

n(n− 1)cnxn−1 + 5

∞∑n=0

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

2

∞∑n=2

n(n− 1)cnxn−1 + 5

∞∑n=1

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

17

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r1 = 0:

2

∞∑n=0

n(n− 1)cnxn−1 + 5

∞∑n=0

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

2

∞∑n=2

n(n− 1)cnxn−1 + 5

∞∑n=1

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

5c1 +

∞∑n=2

[(2n(n− 1) + 5n)cn + cn−2]xn−1 = 0

18

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r1 = 0:

2

∞∑n=0

n(n− 1)cnxn−1 + 5

∞∑n=0

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

2

∞∑n=2

n(n− 1)cnxn−1 + 5

∞∑n=1

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

5c1 +

∞∑n=2

[(2n(n− 1) + 5n)cn + cn−2]xn−1 = 0

5c1 +

∞∑n=2

[(2n2 + 3n)cn + cn−2]xn−1 = 0

19

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r1 = 0:

2

∞∑n=0

n(n− 1)cnxn−1 + 5

∞∑n=0

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

2

∞∑n=2

n(n− 1)cnxn−1 + 5

∞∑n=1

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

5c1 +

∞∑n=2

[(2n(n− 1) + 5n)cn + cn−2]xn−1 = 0

5c1 +

∞∑n=2

[(2n2 + 3n)cn + cn−2]xn−1 = 0

c1 = 0, cn = − 1

2n2 + 3ncn−2, n = 2, 3, 4... c2 = − 1

14c0, c3 = 0

20

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r1 = 0:

2

∞∑n=0

n(n− 1)cnxn−1 + 5

∞∑n=0

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

2

∞∑n=2

n(n− 1)cnxn−1 + 5

∞∑n=1

ncnxn−1 +

∞∑n=2

cn−2xn−1 = 0

5c1 +

∞∑n=2

[(2n(n− 1) + 5n)cn + cn−2]xn−1 = 0

5c1 +

∞∑n=2

[(2n2 + 3n)cn + cn−2]xn−1 = 0

c1 = 0, cn = − 1

2n2 + 3ncn−2, n = 2, 3, 4... c2 = − 1

14c0, c3 = 0

y1(x) = c0(1−1

14x2...)

21

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r2 = −32:

22

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r2 = −32:

2

∞∑n=0

(n− 3/2)(n− 5/2)cnxn−5/2 + 5

∞∑n=0

(n− 3/2)cnxn−5/2 +

∞∑n=2

cn−2xn−5/2 = 0

23

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r2 = −32:

2

∞∑n=0

(n− 3/2)(n− 5/2)cnxn−5/2 + 5

∞∑n=0

(n− 3/2)cnxn−5/2 +

∞∑n=2

cn−2xn−5/2 = 0

−c1x−3/2 +

∞∑n=2

[(2(n− 3/2)(n− 5/2) + 5(n− 3/2))cn + cn−2]xn−5/2 = 0

24

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r2 = −32:

2

∞∑n=0

(n− 3/2)(n− 5/2)cnxn−5/2 + 5

∞∑n=0

(n− 3/2)cnxn−5/2 +

∞∑n=2

cn−2xn−5/2 = 0

−c1x−3/2 +

∞∑n=2

[(2(n− 3/2)(n− 5/2) + 5(n− 3/2))cn + cn−2]xn−5/2 = 0

c1 = 0, cn = − 1

(2n− 3)ncn−2, n = 2, 3, 4... c2 = −1

2c0...

25

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r2 = −32:

2

∞∑n=0

(n− 3/2)(n− 5/2)cnxn−5/2 + 5

∞∑n=0

(n− 3/2)cnxn−5/2 +

∞∑n=2

cn−2xn−5/2 = 0

−c1x−3/2 +

∞∑n=2

[(2(n− 3/2)(n− 5/2) + 5(n− 3/2))cn + cn−2]xn−5/2 = 0

c1 = 0, cn = − 1

(2n− 3)ncn−2, n = 2, 3, 4... c2 = −1

2c0...

y2(x) = c0x−3/2(1− 1

2x2...)

26

The Series Solutions of ODE (5.2 Solutions about Singular Points )

2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 5

∞∑n=0

(n + r)cnxn+r−1 +

∞∑n=2

cn−2xn+r−1 = 0

Solve for r2 = −32:

2

∞∑n=0

(n− 3/2)(n− 5/2)cnxn−5/2 + 5

∞∑n=0

(n− 3/2)cnxn−5/2 +

∞∑n=2

cn−2xn−5/2 = 0

−c1x−3/2 +

∞∑n=2

[(2(n− 3/2)(n− 5/2) + 5(n− 3/2))cn + cn−2]xn−5/2 = 0

c1 = 0, cn = − 1

(2n− 3)ncn−2, n = 2, 3, 4... c2 = −1

2c0...

y2(x) = c0x−3/2(1− 1

2x2...)

General solution:

y(x) = c1y1 + c2y2 = c1(1−1

14x2...) + c2x

−3/2(1− 1

2x2...)

27

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:

28

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

29

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

30

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=0

cnxn+r = 0

31

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=0

cnxn+r = 0

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

32

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=0

cnxn+r = 0

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

n = 0 : r(r − 1)c0 + 3rc0 = 0, r2 + 2r = 0, r1 = 0, r2 = −2

33

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=0

cnxn+r = 0

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

n = 0 : r(r − 1)c0 + 3rc0 = 0, r2 + 2r = 0, r1 = 0, r2 = −2

r2−r1 = 2 it’s an integer number (in general only 1 power series solution)

34

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

Solve for r1 = 0:

35

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

Solve for r1 = 0:∞∑

n=0

n(n− 1)cnxn−2 + 3

∞∑n=0

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

36

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

Solve for r1 = 0:∞∑

n=0

n(n− 1)cnxn−2 + 3

∞∑n=0

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

∞∑n=2

n(n− 1)cnxn−2 + 3

∞∑n=1

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

37

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 28)Find solutions at the point x = 0 for the ODE:

y′′ +3

xy′ − 2y = 0.

Solution:

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

Solve for r1 = 0:∞∑

n=0

n(n− 1)cnxn−2 + 3

∞∑n=0

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

∞∑n=2

n(n− 1)cnxn−2 + 3

∞∑n=1

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

c1 = 0, cn =2

n2 + 2ncn−2, c2 =

1

4c0, c3 = 0...

38

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Solution:

∞∑n=0

(n + r)(n + r − 1)cnxn+r−2 + 3

∞∑n=0

(n + r)cnxn+r−2 − 2

∞∑n=2

cn−2xn+r−2 = 0

Solve for r1 = 0:∞∑

n=0

n(n− 1)cnxn−2 + 3

∞∑n=0

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

∞∑n=2

n(n− 1)cnxn−2 + 3

∞∑n=1

ncnxn−2 − 2

∞∑n=2

cn−2xn−2 = 0

c1 = 0, cn =2

n2 + 2ncn−2, c2 =

1

4c0, c3 = 0...

y1(x) = c0 +1

4c0x

2... = c0(1 +1

4x2..)

Use numerical computations to find y2(x).

39

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:

40

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

41

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

42

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r− 1)cnxn+r−

∞∑n=0

(n + r)(n + r− 1)cnxn+r−1 + 3

∞∑n=0

(n + r)cnxn+r−1−

2∞∑

n=0cnx

n+r = 0

43

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r− 1)cnxn+r−

∞∑n=0

(n + r)(n + r− 1)cnxn+r−1 + 3

∞∑n=0

(n + r)cnxn+r−1−

2∞∑

n=0cnx

n+r = 0

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

44

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r− 1)cnxn+r−

∞∑n=0

(n + r)(n + r− 1)cnxn+r−1 + 3

∞∑n=0

(n + r)cnxn+r−1−

2∞∑

n=0cnx

n+r = 0

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

n = 0 : −r(r − 1)c0 + 3rc0 = 0, −r2 + 4r = 0, r1 = 0, r2 = 4

45

The Series Solutions of ODE (5.2 Solutions about Singular Points )

Problem (5.2: 32)Find solutions at the point x = 0 for the ODE:

x(x− 1)y′′ + 3y′ − 2y = 0.

Solution:x = 0 is a regular singular point. Frobenius method:

y =

∞∑n=0

cnxn+r y′ =

∞∑n=0

(n + r)cnxn+r−1 y′′ =

∞∑n=0

(n + r)(n + r− 1)cnxn+r−2

∞∑n=0

(n + r)(n + r− 1)cnxn+r−

∞∑n=0

(n + r)(n + r− 1)cnxn+r−1 + 3

∞∑n=0

(n + r)cnxn+r−1−

2∞∑

n=0cnx

n+r = 0

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

n = 0 : −r(r − 1)c0 + 3rc0 = 0, −r2 + 4r = 0, r1 = 0, r2 = 4

r2−r1 = 2 it’s an integer number (it might have 2 power series solutions)46

47

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:

48

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:∞∑

n=1(n− 1)(n− 2)cn−1x

n−1 −∞∑

n=0n(n− 1)cnx

n−1 + 3∞∑

n=0ncnx

n−1 − 2∞∑

n=1cn−1x

n−1 = 0

49

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:∞∑

n=1(n− 1)(n− 2)cn−1x

n−1 −∞∑

n=0n(n− 1)cnx

n−1 + 3∞∑

n=0ncnx

n−1 − 2∞∑

n=1cn−1x

n−1 = 0

∞∑n=1

(n− 1)(n− 2)cn−1xn−1 −

∞∑n=1

n(n− 1)cnxn−1 + 3

∞∑n=1

ncnxn−1 − 2

∞∑n=1

cn−1xn−1 = 0

50

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:∞∑

n=1(n− 1)(n− 2)cn−1x

n−1 −∞∑

n=0n(n− 1)cnx

n−1 + 3∞∑

n=0ncnx

n−1 − 2∞∑

n=1cn−1x

n−1 = 0

∞∑n=1

(n− 1)(n− 2)cn−1xn−1 −

∞∑n=1

n(n− 1)cnxn−1 + 3

∞∑n=1

ncnxn−1 − 2

∞∑n=1

cn−1xn−1 = 0

(n− 4)cn = (n− 3)cn−1, c1 =2

3, c2 =

1

2c1 =

1

3c0, c3 = 0

51

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:∞∑

n=1(n− 1)(n− 2)cn−1x

n−1 −∞∑

n=0n(n− 1)cnx

n−1 + 3∞∑

n=0ncnx

n−1 − 2∞∑

n=1cn−1x

n−1 = 0

∞∑n=1

(n− 1)(n− 2)cn−1xn−1 −

∞∑n=1

n(n− 1)cnxn−1 + 3

∞∑n=1

ncnxn−1 − 2

∞∑n=1

cn−1xn−1 = 0

(n− 4)cn = (n− 3)cn−1, c1 =2

3, c2 =

1

2c1 =

1

3c0, c3 = 0

Can we find the value of c4 - ?

52

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:∞∑

n=1(n− 1)(n− 2)cn−1x

n−1 −∞∑

n=0n(n− 1)cnx

n−1 + 3∞∑

n=0ncnx

n−1 − 2∞∑

n=1cn−1x

n−1 = 0

∞∑n=1

(n− 1)(n− 2)cn−1xn−1 −

∞∑n=1

n(n− 1)cnxn−1 + 3

∞∑n=1

ncnxn−1 − 2

∞∑n=1

cn−1xn−1 = 0

(n− 4)cn = (n− 3)cn−1, c1 =2

3, c2 =

1

2c1 =

1

3c0, c3 = 0

Can we find the value of c4 - ? (It’s an arbitrary number)

c5 = 2c4, c6 = 3c4...

53

The Series Solutions of ODE (5.2 Solutions about Singular Points )

∞∑n=1

(n + r − 1)(n + r − 2)cn−1xn+r−1 −

∞∑n=0

(n + r)(n + r − 1)cnxn+r−1 + 3

∞∑n=0

(n +

r)cnxn+r−1 − 2

∞∑n=1

cn−1xn+r−1 = 0

Solve for r1 = 0:∞∑

n=1(n− 1)(n− 2)cn−1x

n−1 −∞∑

n=0n(n− 1)cnx

n−1 + 3∞∑

n=0ncnx

n−1 − 2∞∑

n=1cn−1x

n−1 = 0

∞∑n=1

(n− 1)(n− 2)cn−1xn−1 −

∞∑n=1

n(n− 1)cnxn−1 + 3

∞∑n=1

ncnxn−1 − 2

∞∑n=1

cn−1xn−1 = 0

(n− 4)cn = (n− 3)cn−1, c1 =2

3, c2 =

1

2c1 =

1

3c0, c3 = 0

Can we find the value of c4 - ? (It’s an arbitrary number)

c5 = 2c4, c6 = 3c4...

General solution is:

y(x) = c0(1 +1

2x +

1

3x2) + c4x

4(1 + 2x + 3x2...)

54

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 2)Find the general solution for the ODE:

x2y′′ + xy′ + (x2 − 1)y = 0.

Solution:

55

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 2)Find the general solution for the ODE:

x2y′′ + xy′ + (x2 − 1)y = 0.

Solution:

56

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 2)Find the general solution for the ODE:

x2y′′ + xy′ + (x2 − 1)y = 0.

Solution:ν = 1 is an integer the solution is given as (page 262 (11))

y(x) = c1J1(x) + c2Y1(x)

57

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 12)Solved in the solution manual.

58

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 44)Find the Legendre polynomials P6 and P7 and the differential equationsfor them.

Solution:

59

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 44)Find the Legendre polynomials P6 and P7 and the differential equationsfor them.

Solution:page 269, substitute n = 6 into (26):

P6(x) =1

16[231x6 − 315x4 + 105x2 − 5]

n = 6, (1− x2)y′′ − 2xy′ + 42y = 0

60

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 46)Change variables x = cos(θ) in

sin(θ)d2y

dθ2+ cos(θ)

dy

dθ+ n(n + 1)(sin(θ))y = 0

Solution:

61

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 46)Change variables x = cos(θ) in

sin(θ)d2y

dθ2+ cos(θ)

dy

dθ+ n(n + 1)(sin(θ))y = 0

Solution:

dy

dθ=

dy

dx

dx

dθ=

dy

dx(− sin(θ))

62

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 46)Change variables x = cos(θ) in

sin(θ)d2y

dθ2+ cos(θ)

dy

dθ+ n(n + 1)(sin(θ))y = 0

Solution:

dy

dθ=

dy

dx

dx

dθ=

dy

dx(− sin(θ))

d2y

dθ2= (− cos(θ))

dy

dx+ (sin(θ))2

d2y

dx2

63

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 46)Change variables x = cos(θ) in

sin(θ)d2y

dθ2+ cos(θ)

dy

dθ+ n(n + 1)(sin(θ))y = 0

Solution:

dy

dθ=

dy

dx

dx

dθ=

dy

dx(− sin(θ))

d2y

dθ2= (− cos(θ))

dy

dx+ (sin(θ))2

d2y

dx2

sin(θ)(y′′ sin2(θ)− y′ cos(θ)) + cos(θ)(y′ sin(θ)) + n(n + 1) sin(θ)y = 0

64

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 46)Change variables x = cos(θ) in

sin(θ)d2y

dθ2+ cos(θ)

dy

dθ+ n(n + 1)(sin(θ))y = 0

Solution:

dy

dθ=

dy

dx

dx

dθ=

dy

dx(− sin(θ))

d2y

dθ2= (− cos(θ))

dy

dx+ (sin(θ))2

d2y

dx2

sin(θ)(y′′ sin2(θ)− y′ cos(θ)) + cos(θ)(y′ sin(θ)) + n(n + 1) sin(θ)y = 0

y′′ sin2(θ)− 2y′ cos(θ) + n(n + 1)y = 0

65

The Series Solutions of ODE (5.3 Special Functions )

Problem (5.3: 46)Change variables x = cos(θ) in

sin(θ)d2y

dθ2+ cos(θ)

dy

dθ+ n(n + 1)(sin(θ))y = 0

Solution:

dy

dθ=

dy

dx

dx

dθ=

dy

dx(− sin(θ))

d2y

dθ2= (− cos(θ))

dy

dx+ (sin(θ))2

d2y

dx2

sin(θ)(y′′ sin2(θ)− y′ cos(θ)) + cos(θ)(y′ sin(θ)) + n(n + 1) sin(θ)y = 0

y′′ sin2(θ)− 2y′ cos(θ) + n(n + 1)y = 0

y′′(1− x2)− 2y′x + n(n + 1)y = 0

Legendre equation.

66

See you next week :-) !

67