Energía alternativa a través de Celdas Solares Orgánicas ... · Energía alternativa a través...

Post on 08-Oct-2020

2 views 0 download

Transcript of Energía alternativa a través de Celdas Solares Orgánicas ... · Energía alternativa a través...

1

Energía alternativa a través de Celdas

Solares Orgánicas (OPVs)

Centro de Investigaciones en Óptica (CIO) León, Guanajuato, México

www.cio.mx

José-Luis Maldonado jlmr@cio.mx

Group of Optical Properties of Materials (GPOM)

4to. Curso-Taller Celdas Solares Orgánicas

26-27, mayo del 2016

2

No se puede mostrar la imagen en este momento.

CIO: Optical Research Center

CONACyT Leon Guanajuato, Mexico

65 researchers GRADUATE SCHOOL

IN OPTICS

www.cio.mx

DOCTORADO EN CIENCIAS (ÓPTICA)

MAESTRÍA EN CIENCIAS (ÓPTICA)

MAESTRÍA EN OPTOMECATRÓNICA

Duración 4 años en plan cuatrimestral Perfil de Ingreso M. en Ciencias M. en Ingenierías

Duración 2 años en plan cuatrimestral

Perfil de Ingreso Lic. y/o Ing. Física, Matemáticas, Química,

Electrónica, Mecánica, Sistemas, Nanotecnología, Biotech y carreras afines.

4

Organic photonics and opto-electronics

New properties:

• Electrical conduction!

• Light emission!

• NL optical properties!

π Conjugated molecules and polymers

Organic PV cells

5 5 5

π conjugated molecules and polymers

Semiconducting Polymers

Nobel prize of chemistry 2000 Alan Heeger, Alan MacDiarmid (†) and Hideki Shirakawa: 1974: Discovery of metallic conductivity in iodine doped trans-polyacetylene (CH)x

ONL and opto-electronics

6 6 6 6

Organic electronics

• Economy • Mechanical properties

• Opto-electronic properties modifications • Bio-degradables

7 7 7 7

Organic electronics

8 8 8 8

Alternative energy sources: clean, economical, renewable

9 9

Energías renovables: Energía solar

∗ PND incorpora a las Energías Renovables en la política mexicana.

∗ Ley para el Aprovechamiento de las Energías Renovables y el Financiamiento de la Transición Energética: marco legal específico: enorme potencial de la energía solar en México y otras fuentes de energía renovable

∗ México: irradiación promedio al día: 4.4 kWh/m2, en la zona centro, a 6.3

kWh/m2 por día en el norte del país

∗ SENER: nichos económicos: sistemas fotovoltaicos: 700 megawatts (MW) económicamente factible para su explotación frente a una capacidad instalada

29 MW. Estos 700 MW: 5,200 millones de dólares para la industria solar

• “Programa de Fomento de Sistemas Fotovoltaicos en México (ProSolar) “, 2012 Cooperación técnica entre México y Alemania: SENER-GIZ (Cooperación alemana al desarrollo)

10 10

PV: México-Alemania

11 11

Energía PV en México

• “3 dilemas. Un diagnóstico para el futuro energético de México”, 2013: http://reddecompetencia.cidac.org Centro de Investigación para el Desarrollo, A.C. (CIDAC)

Programa de Sistemas Fotovoltaicos en México SENER:GIZ-GTCo

12

Efficiency: solar cells National renewable Energy Laboratory (NREL)

Conventional silicon solar cell

Organic solar cell

Dark-grey material with dark-blue to black coating Color adjustable

Average absorption of sunlight – thick (around 1/10 mm) compared to organic solar cells, rigid plates required

Strong absorption of sunlight – very thin material layers (less than 1 micron)

Very long lifetime (20 years) Lifetime depends on substrate – on rigid glass substrates long lifetimes are achievable

Efficiency between 15% and 20% Efficiency approximately 12%, rapid progress

7

14 14 14

Organic (Plastic) Solar Cells: OPVs

31/05/2016 15

DYE SENSITIZED SOLAR CELLS (DSSC): Hybrids of nano-porous metal oxides, TiO2, and organic dyes, with solution

electrolytes. Electrochemical cells.

SMALL MOLECULE ORGANIC SOLAR CELLS: Made by vacuum deposition.

POLYMER SOLAR CELLS: Made by solution, low processing.

ORGANIC SOLAR CELLS THREE TYPES

THEY FACE SIMILAR CHALLENGES: To increase efficiency and stability

To develop a technology for large areas

•1975: η = 0.001% • 1986: η = 1.0% • 2006: η = 5.5% • 2009: η = 6.1% • 2014: η = 12.0%

16

Technological prototypes

• Adv. Mater. 2014, 26, 29–39

17 17 17 17

Synthesis Characterization Applications

Organic solar cells (OPVs)

Optics with organics in our group

18

Organic solar cells (OPVs)

100 % ×=inc

scoc

IFFJVη

Substrate

Anode

Cathode

HhνHhν

OLED OPV

Organic layer- +

scoc

max

scoc

mm

JVP

JVJVFF ==

• Charge generation • Exciton diffusion • Charge separation • Charge mobility • Charge collection

• F. Herrmann, et al., “The semiconductor diode as a rectifier, a light source, and a solar cell: a simple explanation”, Am. J. Phys. 74, 591- 594 (2006)

• J.L. Maldonado, et al., “Two examples of organic opto-electronic devices: Light emitting diodes and solar cells”, Am. J. Phys. 76, 1130-1136 (2008)

A more general OPV structure

19

Bulk hetero junction (BHJ)

SEM Image (Jeol)

A more general OPV structure

20 20

Potential market: OPVs

Knapsack prototype based on OPVs arrays: SOLARMER

Light weigh and flexibiity

Transparency

(electrodes and windows)

Low cost

J.F. Salinas ,…Adv. Mater. 24, 6362 (2012)

31/05/2016 21

Alternative counter-electrodes : Wood´s (Pb/Bi/Cd/Sn) and Field´s (Bi/In/Sn) metal

• J.L. Maldonado, et al., Am. J. Phys. 76, 1130 (2008) • J.F. Salinas, et al., Sol. Energ. Mat. Solar C 95, 595 (2011) • C. Salto, et al., Synthetic Met. 161, 2412 (2011) • J.-A. Del Oso et al., Synthetic Met. 196, 91 (2014) • E. Pérez-Gutiérrez, et al., Opt. Mater. 36, 1336 (2014) • J. C. Nolasco, et al., Appl. Phys. Lett. 104, 043308 (2014) • D. Romero-Borja, et al., Synthetic Met. 200, 91 (2015) • S. Romero-Servin, et al., Materials 8, 4258 (2015) • A. Álvarez-Fernández, et al., J. Mater. Sci-Mater. El. 27, 6271 (2016)

Easy and fast deposition

Mp less than 80 °C

Free vacuum process and normal room conditions

Wood´s and Field´s metals

PFN

31/05/2016 22

Wood´s and Field´s metals

Easy and fast deposition

Mp less than 80 °C

• J.L. Maldonado, et al., Am. J. Phys. 76, 1130 (2008) • J.F. Salinas, et al., Sol. Energ. Mat. Solar C 95, 595 (2011) • C. Salto, et al., Synthetic Met. 161, 2412 (2011) • J.-A. Del Oso et al., Synthetic Met. 196, 91 (2014) • E. Pérez-Gutiérrez, et al., Opt. Mater. 36, 1336 (2014) • J. C. Nolasco, et al., Appl. Phys. Lett. 104, 043308 (2014) • D. Romero-Borja, et al., Synthetic Met. 200, 91 (2015) • S. Romero-Servin, et al., Materials 8, 4258 (2015) • A. Álvarez-Fernández, et al., J. Mater. Sci-Mater. El. 27, 6271 (2016)

Efficiency record

GPOM-CIO

7 %

31/05/2016 23

Hybrid solar cells

Perovskite solar cells

0.0 0.2 0.4 0.6 0.8 1.0

-16

-12

-8

-4

0

J (m

A/cm

2 )

Voc=802 mVJsc=17.5 mA/cm2

FF= 0.65η=9.2area=0.06cm2

V (Volts)

ITO/PEDOT/Perovskita/PC71BM/PEIE/FM

“Perovskite solar cells: from materials to devices” Small 11, 10–25 (2015).

24

1) Chemistry: Synthesis and design of new organic materials able of absorbing, as much as possible, solar light

(Chemistry and Materials Sciences)

2) Devices: To increase the electrical efficiency and lifetime (Architectures and engineering)

(Engineers and Physicists)

3) Physics: Fundamental comprehension of the involved physical-chemical phenomena (Ultra fast Spectroscopy studies)

(Optics and physics)

Three important facts: Scientific community

25 25

Perspectives

Larger area OPVs

cells

26 26

OPVs cells arrays

To electrical feed leds, motors, etc.

Encapsulation

27 27

OPVs cells arrays To electrical feed smartphones,

motors, etc.

31/05/2016 28

Conclusions

To make organic solar cells commercially competitive: • materials with low cost and easy fabrication, • higher power conversion efficiency, • larger areas and longer life time (encapsulation) are needed

29

Dr. Norberto Farfán and Héctor García FQ-UNAM Drs. Rosa Santillan , Eusebio Juaristi y Giovana Granados CINVESTAV-DF Dr. Bernardo Frontana CCIQS UAEMéx-UNAM Dr. Marisol Guizado CIICAp-UAEM Dr. Guadalupe De la Rosa U. of Gto. Dr. Rosalba Fuentes-Ramírez U. of Gto. Dr. Jairo Nolasco Hanse-Wissenschaftskolleg, Germany Grupo de polímeros BUAP Dra. Ivana Moggio CIQA Dr. Eduardo Arias CIQA Dra. Rosa Vázquez UAEH

Collaborations

GPOM Members Dr. Gabriel Ramos-Ortíz Dr. Mario Rodríguez Dr. M.A. Meneses-Nava Dr. Oracio Barbosa,

Dr. Enrique Pérez Postdocs: Dr. Álvaro Romero, Dr. Arián Espinosa. Dr. César

Garcías Several undergraduate and graduate Students:

J.F. Salinas, M. Romero, C. Salto, A. Enendi, S. Naude, U. Mendoza, J. Sarahí, V. Rodríguez, A. Alvarez, L. Abraham, D. Barreiro, L. M.

Encinas, Blanca, Francisco, Leonardo, Diana, Wilson

30 30

Financial Support:

a) CONACyT-SENER 153094 and Ce-MieSol 27

b) U. Gto.-CIO

c) Red de polímeros

Thank you