Electron Configurations You will need: 1.Your homework from Friday (Quantum Mechanical Model in last...

Post on 26-Dec-2015

212 views 0 download

Tags:

Transcript of Electron Configurations You will need: 1.Your homework from Friday (Quantum Mechanical Model in last...

Electron Configurations

You will need: 1. Your homework from Friday (Quantum Mechanical

Model in last week’s packet)2. Your homework from last night (Electron

Configuration Guided Reading in this week’s packet)

Anything that you see in white, you should write down

Bohr Model of Hydrogen

Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 331

Nucleus

Possible electron orbits

e

e

Bohr Model of Hydrogen

• Bohr model = epic fail for all other elements

e

e

The Quantum Mechanical Model

The Quantum Mechanical Model• 2 parts of an atoms

–Nucleus –Electron cloud

»Where the probability of finding an electron is high

»Drawn as a fuzzy cloud»The cloud is more dense where the

probability of finding the electron is high.

More likely to find an electron

Less likely to find an electron

Nucleus

Electron cloud

The Quantum Mechanical Model• Atomic Orbitals

–Space around the nucleus –High probability of finding an

electron –Has a specific energy level–Has a specific sublevel

»Sublevels have different shapes

• Further describes where an electron is likely to be found

The Quantum Mechanical ModelAtomic orbital shapes: AKA: Angular momentum quantum number

S orbital Angular momentum quantum number (l) = 0

The Quantum Mechanical ModelAtomic orbital shapes:

P orbitals Angular momentum quantum number (l) = 1

The Quantum Mechanical ModelAtomic orbital shapes:

D orbitals Angular momentum quantum number (l) = 2

The Quantum Mechanical ModelAtomic orbital shapes:

F orbitals Angular momentum quantum number (l) = 3

Think-Pair-Share • Turn to your neighbor and…

–Explain what an orbital is–List the 4 shapes of atomic orbitals

Vocabulary• Quantum numbers: tell us the properties of

atomic orbitals and the properties of electrons in the orbitals

• Principle quantum number – Symbol: n – The energy level that an electron occupies

• Angular momentum quantum number– Symbol: l– The shape of the orbital

• Spin quantum number – +1/2 or -1/2 – Spin state of an electron

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2

3

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

3

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

4

Main energy level (n)

Sublevels(orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4 s 1 2

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4 s 1 2

p 3 6

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4 s 1 2

p 3 6

d 5 10

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4 s 1 2

p 3 6

d 5 10

f

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4 s 1 2

p 3 6

d 5 10

f 7

Main energy level (n)

Sublevels (orbital shape)

Number of orbitals per sublevel

Number of electrons per sublevel

1 s 1 2

2 s 1 2

p 3 6

3 s 1 2

p 3 6

d 5 10

4 s 1 2

p 3 6

d 5 10

f 7 14

Electron Configurations

• Electron configuration:– The arrangement of electrons in an atom

• The lowest-energy arrangement of the electrons for each element is called the element’s ground-state electron configuration

Rules for writing electron configurations

• Aufbau principle: – An electron occupies the orbital of lowest-

energy first

1s 2s 2p3s 3p 3d4s 4p 4d 4f5s 5p 5d 5f6s 6p 6d 6f

Rules for writing electron configurations

• Hund’s rule: – Electrons occupy equal energy orbitals one

at the time – The electrons in each orbital have the

same spin – School bus rule

2px 2py 2pz

Rules for writing electron configurations

• Pauli exclusion principle: –Electrons in the same orbital must

have different spins

2px 2py 2pz

Think Pair Share

• Turn to your neighbor and explain the three rules for electron configurations in your own words

Orbital Diagram p. 105

Box = orbital

Arrow = electron

Up and down arrow = electrons with opposite spins

Electron Notations • Orbital notation

– Lines (or boxes) represent orbitals – Arrows represent electrons

He

Writing Electron Configurations 1. Locate the element on the periodic table

Writing Electron Configurations

2. Determine the number of electrons in the element

1. Locate the element on the periodic table

Writing Electron Configurations

3. Fill in the electrons in the orbital notation diagram starting at 1s (remember the rules)

2. Determine the number of electrons in the element

1. Locate the element on the periodic table

Writing Electron Configurations

4. Write the electron configuration from the completed orbital notation diagram

3. Fill in the electrons in the orbital notation diagram starting at 1s (remember the rules)

2. Determine the number of electrons in the element

1. Locate the element on the periodic table

Writing Electron Configurations

5. Calculate the number of electrons in the electron configuration and make sure it matches what you found in step 2

4. Write the electron configuration from the completed orbital notation diagram

3. Fill in the electrons in the orbital notation diagram starting at 1s (remember the rules)

2. Determine the number of electrons in an atom of the element

1. Locate the element on the periodic table

Orbital Notation

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =# of electrons = 3

Electron Notations • Electron configurations• Written in the following order:

1. Number of energy level2. Letter of sublevel 3. Number of electrons in each sublevel written as

a superscript 1s2Energy level

Sublevel

Number of electrons

1s22s22p6Energy levelsSublevels

Number of electrons

Electron Configurations

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =1

Electron Configurations

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =1s

Electron Configurations

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =1s2

Electron Configurations

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =1s22

Electron Configurations

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =1s22s

Electron Configurations

Aufbau principle: an electron occupies the orbital of lowest-energy first

Li =1s22s1

# of electrons = 3

Electron Configurations

C =

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

# of electrons = 6

Electron Configurations

C = 1

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s2

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s22

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s22s

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s22s2

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s22s22

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s22s22p

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

Electron Configurations

C = 1s22s22p2

Hund’s rule: electrons occupy equal energy orbitals one at the time with the same spin

# of electrons = 6

Electron Configurations

Ca = # of electrons = 20

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s2

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s2

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p6

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s2

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s23

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s23p

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s23p6

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s23p64

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s23p64s

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Ca = 1s22s22p63s23p64s2 # of electrons = 20

Pauli exclusion principle: electrons in the same orbital must have different spins

Electron Configurations

Cl = # of electrons = 17

Electron Configurations

Cl = 1

Electron Configurations

Cl = 1s

Electron Configurations

Cl = 1s2

Electron Configurations

Cl = 1s22

Electron Configurations

Cl = 1s22s

Electron Configurations

Cl = 1s22s2

Electron Configurations

Cl = 1s22s22

Electron Configurations

Cl = 1s22s22p

Electron Configurations

Cl = 1s22s22p6

Electron Configurations

Cl = 1s22s22p63

Electron Configurations

Cl = 1s22s22p63s

Electron Configurations

Cl = 1s22s22p63s2

Electron Configurations

Cl = 1s22s22p63s23

Electron Configurations

Cl = 1s22s22p63s23p

Electron Configurations

Cl = 1s22s22p63s23p5

Exit Ticket

• Fill out the worksheet that is being passed out

• Turn it in when you are finished • Begin working on tonight’s homework

– Save #4 for tomorrow night

sp

d (n-1)

f (n-2) 67

Blocks of the Periodic Table

1s

2s

3s

4s

5s

6s

7s

3d

4d

5d

6d

1s

2p

3p

4p

5p

6p

7p

4f

5f

1234567

Electron Notations • Noble gas notation

– The noble gas that comes before the desired element on the periodic table is written in brackets

– The rest of the electron configuration is written at the end • Energy level • Sublevel • Number of electrons

Sodium’s noble gas notation: [Ne]3s1Noble gas

Energy level Sublevel

Number of electrons

Electron Configurations

Fe = 1s

Electron Configurations

Fe = 1s2

Electron Configurations

Fe = 1s22

Electron Configurations

Fe = 1s22s

Electron Configurations

Fe = 1s22s2

Electron Configurations

Fe = 1s22s22

Electron Configurations

Fe = 1s22s22p

Electron Configurations

Fe = 1s22s22p6

Electron Configurations

Fe = 1s22s22p63

Electron Configurations

Fe = 1s22s22p63s

Electron Configurations

Fe = 1s22s22p63s2

Electron Configurations

Fe = 1s22s22p63s23

Electron Configurations

Fe = 1s22s22p63s23p

Electron Configurations

Fe = 1s22s22p63s23p6

Electron Configurations

Fe = 1s22s22p63s23p64

Electron Configurations

Fe = 1s22s22p63s23p64s

Electron Configurations

Fe = 1s22s22p63s23p64s2

Electron Configurations

Fe = 1s22s22p63s23p64s23

Electron Configurations

Fe = 1s22s22p63s23p64s23d

Electron Configurations

Fe = 1s22s22p63s23p64s23d6

Pauli exclusion principle: electrons in the same orbital must have different spins