DNA/Protein structure-function analysis and prediction

Post on 04-Jan-2016

25 views 0 download

description

DNA/Protein structure-function analysis and prediction. Protein Structure Determination: X-ray Diffraction (Titia Sixma, NKI) Electron Microscopy/Diffraction (Titia Sixma, NKI) NMR Spectroscopy (Lorna Smith, Oxford) Other Spectroscopic methods. Spectroscopy: The whole spectrum. - PowerPoint PPT Presentation

Transcript of DNA/Protein structure-function analysis and prediction

1

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

DNA/Protein structure-function analysis and prediction

• Protein Structure Determination:

– X-ray Diffraction(Titia Sixma, NKI)

– Electron Microscopy/Diffraction(Titia Sixma, NKI)

– NMR Spectroscopy(Lorna Smith, Oxford)

– Other Spectroscopic methods

2

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Spectroscopy: The whole spectrum

3

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

DNA/Protein structure-function analysis and prediction

• Protein Structure Determination:

– X-ray Diffraction

– Electron Microscopy/Diffraction

– NMR Spectroscopy

– Other Spectroscopic methods

4

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Structure determination method X-ray crystallography

Purified protein

Crystal

X-ray Diffraction

Electron density

3D structureBiological interpretation

Crystallization

Phase problem

5

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Protein crystals• Regular arrays of protein molecules

• ‘Wet’: 20-80% solvent• Few crystal contacts

• Protein crystals contain active protein• Enzyme turnover• Ligand binding

Example of crystal packing

6

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Examples of crystal packing

2 Glycoprotein I~90% solvent (extremely high!)

Acetylcholinesterase~68% solvent

7

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Problematic proteins• Multiple domains

• Similarly, floppy ends may hamper crystallization: change construct

• Membrane proteins

• Glycoproteins

Flexible

Lipid bilayer

hydrophilic

hydrophilic

hydrophobic

Flexible and heterogeneous!!

8

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Experimental set-up• Options for wavelength:

– monochromatic, polychromatic – variable wavelength

Liq.N2 gas stream

X-ray source

detector

goniometer

beam stop

9

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Diffraction imageDiffraction image

Water ring

Diffuse scattering (from the fibre loop)

reciprocal lattice reciprocal lattice (this case hexagonal)(this case hexagonal)

Beam stop

Increasing resolution

Direct beam

ReflectionsReflections ( (h,k,lh,k,l) ) withwith I( I(h,k,lh,k,l))

10

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

The rules for diffraction: Bragg’s law

• Scattered X-rays reinforce each other only when Bragg’s law holds:

Bragg’s law: 2dhkl sin = n

11

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Phase Problem• If phases hkl and structure factor F(hkl) known:

• compute the electron density (x,y,z)

– In the electron density build the atomic 3D model

• However, the phases hkl are unknown !

hklhkl

hkl

lzkyhxiihklFV

lzkyhxihklFV

zyx

)}(2exp{exp)(1

)}(2exp{)(1

),,(

12

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

FH, HFK, K

FH, KFK, H

How important are these phases ??• Fourier transform photo’s

of Karle (top left) and Hauptman (top right) (two crystallography pioneers)

• Combine amplitudes FK with phase H and inverse-fourier transform

• Combine amplitudes FH with phase K and inverse-fourier transform

(Taken from: Randy J. Read)

13

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

How can we solve the Phase Problem ?• Direct Methods

– small molecules and small proteins– needs atomic resolution data (d < 1.2 Å) !

• Difference method using heavy atoms– multiple isomorphous replacement (MIR)– anomalous scattering (AS)– combinations (SIRAS,MIRAS)

• Difference method using variable wavelength– multiple-wavelength anomalous diffraction (MAD)

• Using a homologous structure– molecular replacement

14

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Building a protein model• Find structural elements:

-helices, -strands• Fit amino-acid sequence

15

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Building a protein model• Find structural elements:

-helices, -strands• Fit amino-acid sequence

16

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Effects of resolution on electron density

Note: map calculated with perfect phases

d = 4 Å

17

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

d = 3 Å

Effects of resolution on electron density

Note: map calculated with perfect phases

18

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

d = 2 Å

Effects of resolution on electron density

Note: map calculated with perfect phases

19

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

d = 1 Å

Effects of resolution on electron density

Note: map calculated with perfect phases

20

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Refinement process

• Bad phases poor electron density map

errors in the protein model

• Interpretation of the electron density map improved model

improved phases improved map

even better model

… iterative process of refinement

21

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Validation• Free R-factor (cross validation)

– Number of parameters/observations

• Ramachandran plot • Chemically likely (WhatCheck)

– Hydrophobic inside, hydrophilic outside

– Binding sites of ligands, metals, ions

– Hydrogen-bonds satisfied– Chemistry in order

• Final B-factor values

22

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

DNA/Protein structure-function analysis and prediction

• Protein Structure Determination:

– X-ray Diffraction

– Electron Microscopy/Diffraction

– NMR Spectroscopy

– Other Spectroscopic methods

23

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Electron microscopy• Single particle

– Low resolution, not really atomic– Less purity of protein, more transient state analysis

• Two-dimensional crystals– Suited to membrane proteins

• Fibres– Acetylcholine receptor– Muscles, kinesins and tubulin

• Preserve protein by– Negative stain (envelope only)– Freezing in vitreous ice (Cryo-EM, true density maps)

• High resolution possible but difficult to achieve– For large complexes: Combine with X-ray models

24

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Electron diffraction from 2D crystals: Nicotinic Acetylcholine Receptor

Unwin et al, 2005

G-protein coupled receptors

25

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Electron diffraction: near atomic resolution• Structure of the alpha beta tubulin dimer by electron

crystallography. Nogales E, Wolf SG, Downing KH.Nature 1998 391 199-203

26

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Select particles Sort into classes

Average Reconstruct 3D image

Single particle Electron Microscopy

27

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006 Leiman et al. Cell. 2004 Aug 20;118(4):419-29

Cryo EM reconstruction:Tail of bacteriophage T4

28

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

DNA/Protein structure-function analysis and prediction

• Protein Structure Determination:

– X-ray Diffraction

– Electron Microscopy/Diffraction

– NMR Spectroscopy

– Other Spectroscopic methods

29

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

1D NMR spectrum of hen lysozyme (129 residues)

• Too much overlap in 1D: 2D

• 1H-1H• 1H-15N• 1H-13C

30

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

N

C

C

N

C

C

H

O

N

H

O

H C H

R H

HHC

Amino acid spin system

C

O

Amino acid spin system

Step 1: Identification of amino acid spin systems

31

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Val

Val

Thr

Thr

2D COSY spectrum of peptide in D2O

32

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

N

C

C

N

C

C

H

O

N

H

O

H

C H

R H

HHC

NH(i)-NH(i+1) NOE

H(i)-NH(i+1) NOE

H(i)-NH(i+1) NOE

NH(i)-NH(i+1) NOE

Step 2: Sequential assignment

33

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Gly

Gly

AspAsn

Asp

Phe

ThrSer

Leu

Val

2D NOESY spectrum

• Peptide sequence (N-terminal NH not observed)• Arg-Gly-Asp-Val-Asn-Ser-Leu-Phe-Asp-Thr-Gly

34

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Nitroreductase Dimer: 217 residues• Too much

overlap in 2D: 3D

• 1H-1H-15N• 1H-13C-15N

35

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Structural information from NMR: NOEs• For macromolecules such as proteins:

– Initial build up of NOE intensity 1/r6

– Between protons that are < 5Å apart

36

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

O

N

H

O

N

H

R

H

O

N

O

N

H

O

R

HN

H

O

N

H

R

H

H

H

R

O

N

H

H

R

R

H

R

H

O

N

H

OH

R

H

R

NOEs in -helices• NH-NH(i,i+1) 2.8Å• H-NH(i,i+3)3.4Å• H-H(i,i+3) 2.5-4.4Å

• Cytochrome c552 3D 1H-15N NOESY

– H-NH(i,i+3)– resides 38-47– form -helix

37

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

NN

NN

R

O R

O R

OH

H

H

H

R

OH H

H H

NN

NN

N

R

OR

OR

O H

H

H

H

R

OHH

HH

O

H

NOEs in -strands• H-NH(i,j) 2.3Å• H-NH(i,j) 3.2Å

38

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Long(er) range NOEs • Provide information about

– Packing of amino acid side chains – Fold of the protein

• NOEs observed for CH of Trp 28 in hen lysozyme

39

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

N

C

C

N

C

C

H

O

N

H

O

H C H

R H

HHC

C

O

Spin-spin coupling constants• Fine structure in COSY cross peaks• For proteins 3J(HN.H) useful:

– Probes main chain torsion angle

• Hen lysozyme:

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140

Co

up

ling

co

nst

an

t (H

z)

Residue number

40

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Structural information from NMR3. Hydrogen exchange rates

• Dissolve protein in D2O and record series of spectra

– Backbone NH (1H) exchange with water (2H)• Slow exchange for NH groups

– In hydrogen bonds– Buried in core of protein

After 20 mins After 68 hours 1H-15N HSQC spectra for SPH15 in D2O

41

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Structural information from NMR• NOEs

– 1H - 2H 1.8-2.5Å (strong)– 2H - 40HN 1.8-5.0Å (weak)– 3H - 88H2 1.8-5.0Å (weak)– 3H - 55H 1.8-3.5Å (medium)

• Spin-spin coupling constants– 1C-2N-2C-2C -120+/-40°– 4C-5N-5C-5C -60+/- 30°– 5C-6N-6C-6C -60+/- 30°

• Hydrogen exchange rates– 10HN-6CO 1.3-2.3Å 10N-6CO 2.3-3.3Å– 11HN-7CO 1.3-2.3Å 11N-7CO 2.3-3.3Å

42

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

NMR structure determination: hen lysozyme

• 129 residues– ~1000 heavy atoms– ~800 protons

• NMR data set– 1632 distance restraints– 110 torsion restraints– 60 H-bond restraints

• 80 structures calculated• 30 low energy

structures used

0

2000

4000

6000

8000

1 10 4

1.2 10 4

10 20 30 40 50 60 70

Tot

al e

nerg

y

Structure number

43

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Solution Structure Ensemble• Disorder in NMR ensemble

– lack of data ?

– or protein dynamics ?

44

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

DNA/Protein structure-function analysis and prediction

• Protein Structure Determination:

– X-ray Diffraction

– Electron Microscopy/Diffraction

– NMR Spectroscopy

– Other Spectroscopic methods

45

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Ultrafast Protein Spectroscopy• Structure-sensitive technique• State of protein and substrate

– Redox state– Protonation– Elektronen

• Follow reactions in real-time• Why ultrafast spectroscopy?

– Molecular movement: time scales of 10 fs – 1 ps (10-15 – 10-12 s)

– O H stretching frequency: ~3500 cm-1 (~ 10-14 s)• Transfer or movement of proton, electron or C-atom

46

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

1750 1700 1650 1600

-2

0

2

mO

D

Wavenumber (cm-1)

Chl*/Chl in THF Pheo*/Pheo in THFketo

ester

Keto and ester C=O in Chlorophyll a, Pheophytin a are redox and environmental probes

Excited state difference spectra of Chl and Pheo

47

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

X – C – O – H

O – XOω1

ω2

ω1’

ω2’

Why is vibrational spectroscopy sensitive to structure?

48

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

H-bond response during the photocycle

1780 1760 1740 1720 1700 1680-1.0

-0.5

0.0

0.5

mO

D

Wavenumber (cm-1)

2 ps, excited state 700 ps, I0 inf, I1

1740 1720 1700 1680 1660 1640

-1

0

1

2

mO

D

Wavenumber (cm-1)

1.5 ps, excited state 800 ps, I0 inf, I1

S

NHOO

O HO

H

O

O

H

NH

H2N NH2

Cys69

Thr50

Tyr42

Glu46

+

Arg52

Replace Glu with Gln whichdonates weaker H-bond

weaker stronger

broken

49

Str

uctu

re-F

un

cti

on

An

aly

sis

17 Jan 2006

Summary

Method Pro Con

X-ray crystallography

High resolution

No size limits

Easy addition of ligands

Crystals required

Phase problem

Electron microscopy /

diffraction

Single particles possible

Well suited to membrane proteins

Labour intensive

High resolution difficult

NMR spectroscopy

In solution

Dynamic information possible

Resolution variable

Limited size (< ~30kDa)

Other spectroscopy

(Very) high time resolution (ps!)

Very sensitive

Technically extremely complex

Limited applicability

Limited information