Distinct telomere differences within a reproductively ... · Here, we have studied maternal and...

Post on 15-Aug-2020

3 views 0 download

Transcript of Distinct telomere differences within a reproductively ... · Here, we have studied maternal and...

Functional Ecology. 2019;00:1–11.  | 1wileyonlinelibrary.com/journal/fec

Received:13April2019  |  Accepted:3July2019DOI: 10.1111/1365-2435.13408

R E S E A R C H A R T I C L E

Distinct telomere differences within a reproductively bimodal common lizard population

Darryl McLennan1,2  | Hans Recknagel1  | Kathryn R. Elmer1  | Pat Monaghan1

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2019TheAuthors.Functional EcologypublishedbyJohnWiley&SonsLtdonbehalfofBritishEcologicalSociety

DarrylMcLennanandHansRecknagelcontributedequallytothiswork.

1InstituteofBiodiversity,AnimalHealthandComparativeMedicine,UniversityofGlasgow,Glasgow,UK2DepartmentofFishEcologyandEvolution,EAWAG,Kastanienbaum,Switzerland

CorrespondenceDarrylMcLennanEmail:darrylmclennan@outlook.com

Funding informationNaturalEnvironmentResearchCouncil,Grant/AwardNumber:NE/N003942/1;H2020EuropeanResearchCouncil,Grant/Award Number: 322784

HandlingEditor:FrédéricAngelier

Abstract1. Differentstrategiesofreproductivemode,eitheroviparity(egg‐laying)orvivipar-ity(live‐bearing),willbeassociatedwitharangeofotherlife‐historydifferencesthatareexpectedtoaffectpatternsofageingandlongevity.Itisusuallydifficulttocomparetheeffectsofalternativereproductivemodesbecauseofevolution-aryandecologicaldivergence.However,theveryrareexemplarsofreproductivebimodality,inwhichdifferentmodesexistwithinasinglespecies,offeranoppor-tunityforrobustandcontrolledcomparisons.

2. Onetraitofinterestthatcouldbeassociatedwithlifehistory,ageingandlongev-ityisthelengthofthetelomeres,whichformprotectivecapsatthechromosomeendsandaregenerallyconsideredagoodindicatorofcellularhealth.Theshorten-ingofthesetelomereshasbeenlinkedtostressfulconditions;therefore,itispos-siblethatdifferingreproductivecostswillinfluencepatternsoftelomereloss.Thisisimportantbecauseanumberofstudieshavelinkedashortertelomerelengthtoreduced survival.

3. Here,wehavestudiedmaternalandoffspringtelomeredynamicsinthecommonlizard(Zootoca vivipara).Ourstudyhasfocusedonapopulationwhereoviparousand viviparous individuals co‐occur in the same habitat and occasionally inter-breedtoformadmixedindividuals.

4. Whileviviparityconfersmanyadvantagesforoffspring, itmightalso incursub-stantial costs for themother, for example requiremore energy. Therefore,wepredictedthatviviparousmotherswouldhaverelativelyshortertelomeresthanoviparousmothers,withadmixedmothershavingintermediatetelomerelengths.Thereisthoughttobeaheritablecomponenttotelomerelength;therefore,wealsohypothesizedthatoffspringwouldfollowthesamepatternasthemothers.

5. Contrarytoourpredictions,theviviparousmothersandoffspringhadthelongesttelomeres,andtheoviparousmothersandoffspringhadtheshortesttelomeres.Thedifferingtelomerelengthsmayhaveevolvedasaneffectofthelife‐historydivergencebetweenthereproductivemodes,forexampleduetothe increased

2  |    Functional Ecology MCLENNAN Et AL.

1  | INTRODUC TION

Differingreproductivestrategiescanco‐occurwithinaspecies,dueto both environmental and genetic differences among individuals,aswellastheinteractionbetweenthetwo(Taborsky&Brockmann,2010).Thisphenotypicvariationcanexistonacontinuousspectrumorfallintodiscontinuouslife‐historymodes(Partridge,MacManes,Knapp,&Neff,2016;Tsubaki,Hooper,&Siva‐Jothy,1997),andstrat-egies canbeplasticor fixedwithin an individual's lifetime (Bailey,Gray,&Zuk,2010;Baum,Laughton,Armstrong,&Metcalfe,2004;Bronikowski&Arnold,1999;Meunieretal.,2012;Zamudio&Chan,2008).

Astrikingexampleof fixed,discontinuousreproductivemodesiswhenaspeciesisbimodalforbothoviparity(i.e.egg‐laying)andviviparity(i.e.givingbirthtoliveyoung).Viviparityisevolutionarilyderivedfromoviparityandconfersmanybenefitstooffspring,par-ticularlyamorestableandprotecteddevelopmentalenvironmentinthemother's reproductive tract (Shine, 1995).However, viviparitycanalsorestrictamother'sreproductiveoutputandmayreducethenumberofclutchesproducedwithinagivenyear(Blackburn,1999;Recknagel&Elmer,2019;Sites,Reeder,&Wiens,2011;Wourms&Lombardi,1992).Mostvertebratespeciesexhibitonlyoneofthesereproductivemodes;however,inasmallnumberofspecies,bothre-productivemodesoccur(Murphy&Thompson,2011).Thedifferingmaternalcostsassociatedwitheachreproductivemodehavebeenlittle studied, in part because so few species exhibit bothmodes.However,ithasbeensuggestedthatviviparitymayincursubstantialcostsforthemother.Firstly, theprolongedgestationalperiodandpresumed largerclutchmass inviviparous individuals (Horváthováetal.,2013;Qualls&Shine,1998;Roitbergetal.,2013)couldcarryagreatermetaboliccostforthemother.Secondly,viviparityhasbeenlinkedtotheevolutionoflargerbodysizestocounteractthespaceconstraint in utero (Qualls & Shine, 1995) and there can be costsassociatedwithrapidgrowthand/oralargerbodysize(Metcalfe&Monaghan,2003).

Itislikelythatsuchadivergenceinreproductivemodewillalsobeassociatedwithotherlife‐historydifferences,whichcouldinturnaffectpatternsofageingand longevity.Onetrait thatcouldbeofinterestinthiscontextistelomerelength.Telomerescaptheendsofeukaryoticchromosomesandplayanimportantroleinchromosomeprotection(Blackburn,1991;Monaghan,2010).Thesetelomerecapsshortenwith each round of cell division because of the ‘end rep-licationproblem’ (Levy,Allsopp,Futcher,Greider,&Harley,1992).Certainspeciesarecapableoftelomereelongation,mostlyviatheexpressionoftheenzymetelomerase(Gomes,Shay,&Wright,2010;

Tianetal.,2018).However,intheabsenceofelongationmechanisms,telomeresmayshortentosuchanextentthatthecentralcodingre-gionofthechromosomebecomesvulnerable.Assuch,arelativelyshorttelomerelengthisconsideredtobeanindicatorofpoorcellu-larandbiologicalstate,andanumberofstudieshavelinkedashortertelomerelengthand/orafasterrateoftelomereattritiontoreducedsurvivaland/orlongevity(Boonekamp,Mulder,Salomons,Dijkstra,&Verhulst,2014;Debes,Visse,Panda,Ilmonen,&Vasemagi,2016;Dupoué et al., 2017; Salmón, Nilsson, Nord, Bensch, & Isaksson,2016;Wilbournetal.,2018).

Inadditiontocelldivision,theacceleratederosionoftelomereshas been linked to environmental stressors, potentially via oxida-tivestresspathways(Monaghan&Ozanne,2018;Reichert&Stier,2017,but seealsoBoonekamp,Bauch,Mulder,&Verhulst,2017).Recentstudieshave linked telomeredynamics tovariousstressfulconditions,bothinvitroandinvivo(Barnes,Fouquerel,&Opresko,2018; Cram, Monaghan, Gillespie, & Clutton‐Brock, 2017; Debesetal.,2016;Monaghan,2014;Olssonetal.,2018).Moreover,are-centstudyonAustralianpainteddragons(Ctenophorus pictus)foundthat telomere dynamics differed between individuals with differ-entreproductiveandlife‐historytactics (Rollingsetal.,2017). It isthereforepossiblethatdifferingreproductivecostsassociatedwithoviparityorviviparitywillalsoinfluencepatternsoftelomereloss.

Inadditiontoaffectingmaternaltelomerelength,differencesbetween oviparous and viviparous life‐history strategies couldalso affect the telomere lengthof theoffspring that arise fromthese reproductive modes. A number of studies have reporteda heritable component to telomere length (Bouwhuis, Verhulst,Bauch,&Vedder,2018;Dugdale&Richardson,2018).Moreover,offspringtelomerelengthcouldalsobesubjectedtomaternalef-fects,forexampleviadifferencesinembryonicprovisioningand/or embryonic environment (McLennan et al., 2018a; Noguera,Metcalfe, Reichert, & Monaghan, 2016), as well as potentialmaternal effects on oocyte telomere length (Keefe, Kumar, &Kalmbach, 2015). Further, since oviparous offspring interactwith the environment at an earlier life stage, it is possible thatthetelomeresof theseoffspringcouldthenbedifferentiallyaf-fected by environmental factors, for example via temperatureandgrowtheffectsonearly lifedevelopment (McLennanet al.,2018b;Monaghan&Ozanne,2018;Vedder,Verhulst,Zuidersma,&Bouwhuis,2018).

The common lizard (Zootoca vivipara) is one of only a few ex-tantvertebratespeciesinwhichbothviviparityandoviparityoccur(Surget‐Grobaetal.,2006).Inthisstudy,weexaminematernalandoffspring telomere dynamics in a wild common lizard population

growth rate that viviparous individuals may undergo to reach a similar size atreproduction.

K E Y W O R D S

life‐historyvariation,oviparity,physiologicalstate,squamate,viviparity

     |  3Functional EcologyMCLENNAN Et AL.

in which different evolutionary lineages with either an oviparousor viviparous reproductivemode coexistwithin the same habitat.Reproductivemodeinthisspeciesisknowntobegeneticallydeter-minedandfixedbetweenlineages(Arrayago,Bea,&Heulin,1996;Recknagel&Elmer,2019;Recknagel,Kamenos,&Elmer,2018).Theoviparousmotherslaycalcifiedeggs~33daysaftercopulation(i.e.oviposition)withameanthicknessof40µm,whicharethenincu-bated by themother for ~28 days (Arrayago et al., 1996; Heulin,1990; Lindtke,Mayer,&Böhme,2010).Offspring fromviviparousmothersareretainedinuteroforthedurationofembryonicdevel-opment (~57 days between copulation and birth; Arrayago et al.,1996)andarefullydevelopedatbirth(i.e.parturition).Eachvivipa-rousoffspringisbornindividuallysurroundedbyathinmembrane,fromwhichtheythen‘hatchout’ofimmediatelyorwithinafewdaysafter parturition (Recknagel & Elmer, 2019). Because this popula-tionoccursinauniquecontactzonebetweenthetworeproductivemodes,admixture isalsopossible (Lindtkeetal.,2010;Recknagel,2018). Admixed offspring are created when interbreeding occursbetween the two reproductive modes. These offspring may befirst‐generationhybridsor result fromthebackcrossingofhybridswith oviparous or viviparous individuals. Offspring from admixedindividualsare laid inthinnerand lesscalcifiedeggs,butata laterdevelopmentalstage,comparedwithoviparousoffspring.However,embryomortalityisalsomuchhigherintheadmixedoffspring,withestimatesofaround40%(Lindtkeetal.,2010).

Here,wehavemeasured telomere length in viviparous, ovipa-rous andadmixed common lizards, ofbothmothers and theiroff-spring.Wepredictedthatviviparousmothers(withthepresumptionthattheyincurahigherreproductiveburden)wouldhaverelativelyshorter telomeres than oviparous mothers, while the telomerelengthsofadmixedmotherswouldbe intermediatebetween theiroviparousandviviparousconspecifics.Lastly,sincethereisknowntobeaheritablecomponenttotelomerelength,wepredictedthatthepatternsoftelomerelengthintheoffspringwouldfollowthoseofthemothers.

2  | MATERIAL S AND METHODS

2.1 | Field study

ThefieldaspectofthisstudywasconductedintheGailtalvalleyoftheCarinthianAlps,Austria(N46.60°,E13.14°),andunderpermitnumber HE3‐NS‐959/2013 (012/2016). This is currently the onlyknown locationwherebothviviparousandoviparouscommon liz-ardsco‐occurinhighdensitiesandoccasionallyinterbreed(Cornettietal.,2015;Lindtkeetal.,2010;Recknagel,2018).Thestudysitecoveredanareaofapproximately0.3km2andanaltitudinalrangeof1,380–1,580m.Wild female lizardswerecaughtbetweenMayandJuly2016;femalescanbedistinguishedfrommalesbytheab-senceofahemipenalbulgeatthebaseofthetail.Whetherornotafemalehadrecentlymatedwasidentifiedbythepresenceofabitingmarkonthefemale'sbellyorflank(Lindtkeetal.,2010).Immediatelyaftercapture,alllizardswereweighed(tothenearest0.001g)and

snout–ventlength(SVL)andtaillength(TL)weremeasured(tothenearest0.01mm).Tailautotomy(self‐amputationofthetailasade-fencefrompredatorsandconspecifics) isacommonoccurrenceinthis species.Tail autotomyhaspreviouslybeen linked to telomeredynamics(Olsson,Pauliny,Wapstra,&Blomqvist,2010);therefore,forthisstudy,wedecidedtoincludeonlyfemalesthathadanon‐au-totomizedtail.

Females thathad recentlymated (andwere therefore likely tobepregnant)weremovedtonearbyholding facilitiesso that theirreproductivemodecouldbeassessed.Allfemaleswereindividuallyhoused inplastic terraria (56×39×28cm) thatwerecoveredbynettingonthetopandononeside,toallowsufficientairflow.Theterrariawerehousedwithintents,sothateachlizardwasexposedtonatural temperaturevariation.Eachterrariumcontainedsandsub-strate,suitableshelter(e.g.piecesofdriedwood),moisturizedmossandabowlofwater. Lizardswere fedad libitumwithmealworms(Tenebrio molitor)andcrickets(Gryllus assimilis).

Eachfemalewascheckeddailyforthepresenceofoffspring.Onthe sameday that a femalehadundergoneoviposition (to shelledeggs)orparturition(toliveyoung),thefemalewasweighed(tothenearest0.001g)andthenumberofoffspringwithinaclutch(here-afterclutchsize,CZ),relativeclutchmass(RCM:clutchmass,includ-ingeggshell,amnioticfluidsandyolk,dividedbyfemalemassafteroviposition/parturition)andrelativeoffspringmass(ROM:summedmass of the offspring after hatching, excluding eggshell, amnioticfluidsandyolk,dividedbyfemalemassafteroviposition/parturition)was measured. After oviposition/parturition, a tail clip was takenfromeachfemaleforsubsequentsequencingandtelomereanalysis.Whileabsolutetelomerelengthsmaydifferamongtissues,studieshavefoundstrongcorrelationsintelomerelengthbetweendifferenttissues in birds (Reichert, Criscuolo,Verinaud, Zahn,&Massemin,2013)andlizards(Rollingsetal.,2019).Moreover,astudyonbrowntroutSalmo truttabyDebesetal. (2016) foundtrends intelomeredynamicstobesimilaramongtissues,includinghighlyregenerativetissues suchas fin.Therefore,wewere confident inusing the tailclips for a non‐invasivemeasurement of telomere length. Shortlyaftersampling,thefemaleswerereturnedandreleasedbacktothesamelocationatwhichtheyhadbeencaught.Unhatchedoffspringwereincubatedat24°CinanExoTerraIncubator.Onthedayofbirthorhatching,each individualwasweighed (to thenearest0.001g),SVLwasmeasured(tothenearest0.01mm),andatailclipwastakenforsubsequenttelomereanalysis.Theoffspringwerethenreturnedand releasedback to thesame locationatwhich themothershadbeencaught.Intotal,wehadcompletetailsamplesfor69mothers(23oviparous,33viviparousand13admixedindividuals).Offspringthatdidnothatchwereexcluded.Intotal,wehadoffspringtailclipsamplesfrom57ofthemothers(20oviparous,29viviparousand8admixedindividuals).

2.2 | DNA extraction

ThetailclipsamplesweretransferredtotheUniversityofGlasgow,UK.DNAwasextractedfromallsamplesusingtheMacherey‐Nagel

4  |    Functional Ecology MCLENNAN Et AL.

DNA NucleoSpin Tissue Extraction Kit, following the manufac-turer'sprotocol.Foreachofthemothers,across‐sectionalsampleofthetail(approximately3mmwide)wasincubatedin180µllysisbuffer+20µlofproteinaseKsolution(20mg/ml)at56°Covernight.Sampleswerethencentrifugedtoseparatebonefragmentsfromthetissuelysate,withthelysatebeingusedinthesubsequentDNAex-traction.Fortheoffspring,allsiblingswithinaclutchwerepooled(min1offspring,max10offspring)sothattherewasoneaveragedoffspringDNAsamplepermother.Again,across‐sectionalsampleoftail (approximately1mmwide)wastakenfromeachofthesib-lingsandthepooledtissuewasthenprocessedinthesamewayasforthemothers.DNAconcentrationandpuritywasmeasuredspec-trophotometricallyusingaNanoDrop8000,whichconfirmed thatallsamplesmettherecommendedA260/280ratioandhadaDNAconcentration>20ng/µl.

2.3 | Identifying maternal reproductive mode by ddRADSeq

Oviparous and viviparous females are easily distinguishable byphenotype:oviparousoffspringarelaidincalcifiedshellsandthenrequire ~28days of incubation prior to hatching,while viviparousoffspringarebornfullydeveloped,butinathinmembranethattheythen‘hatchout’ofwithinafewhourstodaysafterbirth(Arrayagoetal.,1996;Lindtkeetal.,2010).However,becauseourstudypopula-tionoccurs inauniquecontactzone,therewerealsofemalesthatlaidadmixedoffspringthatexhibitedintermediatephenotypes,suchaspartiallycalcifiedshellsandfewerdaysofincubationcomparedtooviparousclutches.Therefore,weusedadouble‐digestrestrictionsite‐associatedsequencing(ddRADSeq)approachtogeneticallydis-tinguishbetweenthereproductivemodesandadmixedindividuals.Todoso,wefollowedtheddRADSeqlibrarypreparationprotocolofRecknageletal.(2018);seeAppendixS1fordetails.

Femaleswereassignedamembershipvalue(Q)toestablishfromwhichlineageofwhichreproductivemodetheyderived(Recknageletal.,2018).Femalesthathadastrongsignatureofoviparousge-nomic background (Q value ≤0.01) were assigned as oviparous,whilefemaleswithastrongviviparousgenomicbackground(Q value ≥0.99) were assigned as viviparous. Females that had a genomicbackgroundofadmixture(Qvalue>0.01and<0.99)wereassignedasadmixedindividuals.Weassignedareproductivemodeto67outof69of the femalesbasedon theirgenotypes.Twoof the lizardswerenotincludedintheddRADSeqlibrary;however,theirnumberofincubationdayswasclearlyintheviviparousandoviparousranges(2and35, respectively); therefore,wewereconfident inassigningtheirreproductivemodebasedonphenotypealone.

2.4 | Telomere analysis

Common lizard telomere length has been previously measuredusingtheTeloTAGGGTelomereLengthAssay(Dupouéetal.,2017),confirming that common lizard telomeresarealsomadeupof therepetitivesequenceTTAGGG.For this study, telomere lengthwas

measured in all samples using the quantitative PCR method de-scribedbyCawthon(2002).TheuniversalTel1bandTel2bprimersdesignedbyCawthon(2002)andmodifiedbyEpeletal.(2004)wereused for amplification of the telomere repeats. The recombina-tionactivatinggene1(RAG‐1)waschosenasthesingle‐copygene,and the Z. vivipara RAG‐1 sequence (GenBank accession number:KY762205.1)wasusedtodesignprimers.ThefollowingforwardandreverseRAG‐1primerssuccessfullyamplifiedasingleamplicon,asdeterminedbymeltcurveanalysis,andweresubsequentlyusedintheanalysis:

LizRAG1‐F5′‐GCCAACTGCAACAAGATACAC‐3′andLizRAG1‐R5′‐GATATGCTCACAGACCTGACAA‐3′.

A full outlineof theqPCRprotocol is provided in theAppendix S1.The samples (69mothers and 57 offspring) were randomly distrib-utedacrosssixsetsofPCRplates.qPCRdatawereanalysedusingtheqBASEsoftwareforWindows(Hellemans,Mortier,Paepe,Speleman,&Vandesompele,2007),asdescribedinMcLennanetal. (2016).Foreachsample, theqBASE softwareproducedacalibratednormalizedrelativequantity(CNRQ).ThisissimilartotheT/SratiodescribedbyCawthon(2002)butwithgreatercontroloftheqPCRefficiencyandinter‐platevariation(seeAppendixS1forfurtherdetails).Threepointsfromthestandardcurve(5,10and20ng/well)wereusedasinter‐runcalibratorsduringqBASEanalysis, tohelp correct for inter‐runvari-ation.Theremainingthreepointsofthestandardcurve(40,2.5and1.25ng/well)wereusedtocalculateaninter‐assaycoefficientofvari-abilityoftheCNRQs(whichwas8.22).Theaverageintra‐platevaria-tionoftheCtvalueswas0.94forthetelomereassayand0.33fortheRAG‐1assay,respectively.Theaverageinter‐platevariationoftheCtvalueswas1.44forthetelomereassayand0.34fortheRAG‐1assay,respectively.TheefficienciesofthetelomereandRAG‐1assaysrangedfrom95.6% to 108.5% and 91.7% to 97.9%, respectively, andwerethereforewithintheacceptablerange(85%–115%).Theaveragequan-tificationcycle(Ct)forthetelomereandRAG‐1assayswas12.04and22.87,respectively.WefoundnosignificantdifferenceintheRAG‐1Ctvaluesamongthethreereproductivemodes(oviparous,viviparousandadmixed)(GLMF2,66=1.08,p=.35),butahighlysignificantdifferenceamongthetelomereCtvalues(GLMF2,66=19.08,p<.001).

2.5 | Statistical analysis

WeusedaPearsoncorrelationcoefficientmatrixtoassesspotentialcollinearitybetweenallcovariates(withacut‐offcoefficientof0.8).Mass and lengthwere highly collinear for bothmothers (Pearsonr=.91,p<.001)andoffspring(Pearsonr=.91,p<.001);therefore,onlymasswasused forsubsequentanalyses.Allvariablesused intheanalysesareshowninTable1.

All statistical analyseswere conducted using r version 3.5.0 software. Intotal,weraneightstatisticalmodels.Firstly,werangeneral linear models (GLMs) to assess whether maternal mass(model 1), offspring mass (model 2), clutch size (model 3) andrelative clutchmass RCM (model 4) and relative offspringmass

     |  5Functional EcologyMCLENNAN Et AL.

ROM (model 5) varied between the female reproductive mode.Secondly,weconductedalinearmixedmodel(LME)usingthelme4andlmerTestfunctions(Bates,Maechler,Bolker,&Walker,2015;Kuznetsova, Brockhoff, & Christensen, 2014) to assesswhetherRTL (relative telomere length) differed between life stage andreproductivemode,which includedfamily IDasarandomfactorto control for non‐independencebetweenmother andoffspring(model 6). Estimates of marginal (fixed effects) and conditional(fixedeffects+randomeffects)R2valuesofthemixedmodelwerecalculatedusingtheMuMinpackage.Finally,welookedatfactorsaffecting variation in RTL at each life stage by conducting twoseparateGLMs.Firstly,maternalRTLwasassessed inrelationtoreproductivemode,maternalmass,clutchsizeandRCM(model7).Thismodelwasthensimplifiedbybackwardselimination,startingwiththemostinsignificanttermandcontinuingwithinsignificantmaineffectsuntilthemodelcontainedonlysignificantterms;pro-vidingthatthisresultedinareductionoftheAICscore.Secondly,meanoffspringRTLwasassessedinrelationtomaternalRTL,re-productivemode,offspringmass,clutchsize,RCMandtheinter-actionmaternal RTLwith reproductivemode to assesswhetherthe relationship betweenmaternal RTL andmean offspring RTLdiffered between the reproductivemodes (model 8). As before,model 8 was then simplified by backwards elimination, startingwith insignificant interactions and continuing with insignificantmain effects until the model contained only significant terms.Variableswereonlyremovedfromthemodel ifthisresultedinareductionoftheAkaikeinformationcriterion(AIC)score.

3  | RESULTS

3.1 | Life‐history variation

Wedidnotfindasignificantdifferenceinsomaticmassamongthere-productivemodesatthematernalstage,measuredafteroviposition/parturition(Table2.1andFigure1a);however,therewasasignificantdifference at the offspring stage, measured on the day of birth or

hatching,withoviparousoffspringbeingtheheaviest,viviparousoff-springbeingthelightestandadmixedoffspringbeingtheintermediate(GLMF2,54=30.85,p< .001;Table2.2andFigure1b).Thenumberofoffspringwithinaclutchalsodifferedsignificantlyamongthe re-productive modes, with viviparous mothers producing the smallestclutchesandoviparousmothersproducingthelargestclutches(GLMF2,66=3.99,p= .023;Table2.3andFigure2c).RCM(relativeclutchmass, including eggshell, amniotic fluids, etc.) did not significantlydiffer among themodes, suggesting that therewas similar resourceinvestmentamongthemothers(Table2.4).However,wedidfindasig-nificantdifferenceinROM(relativeoffspringmass,excludingeggshell,amnioticfluids,etc.)amongthereproductivemodes,withROMbeinghighestintheoviparousfamiliesandlowestintheviviparousfamilies(GLMF2,54=33.15,p<.001;Table2.5andFigure2b).Thissuggeststhatwhiletherewasasimilarinvestmentofmaternalresourcesamongthereproductivemodes(intermsofembryo,eggshell,yolkandamni-oticfluidproduction),theoviparousfemaleshadahighernetgainperclutch,supportedbythelargerclutchsizeandoffspringmass.

3.2 | Telomere length variation

TherewasasignificantdifferenceinRTLbetweenmothersandoff-spring.Mothershadrelativelylongertelomeresthantheiroffspringwithineachofthethreereproductivemodes(LMMF1,55.03=32.14,p< .001;Table3andFigure3).Telomere lengthalsodifferedsig-nificantly between the reproductivemodes. The viviparousmodehad the longest telomeres, the oviparous mode had the shortesttelomeres,andtheadmixed individualshadrelatively intermediatetelomeres(LMMF2,59.13=72.55,p<.001;Table3andFigure3).Thiswastrueforbothmothers(GLMF2,66=37.98,p<.001;Table2.7andFigure3)andoffspring(GLMF2,54=63.12,p<.001;Table2.8andFigure3).Whenfocusingonlyonthemothers,maternalmass,clutchsizeandRCMwerenotsignificantlyassociatedwithmaternalRTL.For the offspring,maternal RTL, offspringmass, clutch size, RCMandtheinteractionmaternalRTLXreproductivemodewerenotsig-nificantlyassociatedwiththerelativemeantelomerelength.

TA B L E 1  Summaryofallthevariablesusedinstatisticalanalyses

Variable name Variable description

Lifestage Lifestageatwhichasamplewastaken(i.e.whetherfrommotheroroffspring).Factor

Reproductivemode Reproductivephenotypeofeachmother,basedontheddRADSeqanalysis.Offspringwereassignedthesamemodeastheirmother.Factor

MaternalRTL Relativetelomerelengthofeachmother,measuredattheindividuallevel.Covariate

MeanoffspringRTL Relativeoffspringtelomerelength,measuredasanaverageforeachmotheracrossalloffspring.Covariate

Maternalmass Somaticmassofeachmotherafterovipositionorparturition(tothenearest0.001g).Covariate

Offspringmass Somaticmassofoffspringatthetimeofhatching,measuredasanaverageforeachmother(tothenearest0.001g).Covariate

RCM Relativeclutchmass:clutchmassdividedbyfemalemassafterovipositionorparturition.Covariate

ROM Relativeoffspringmass:sumoftheoffspringmassafterhatchingdividedbyfemalemassafteroviposition/parturition.Covariate

Clutchsize Numberofoffspringbornwithinagivenclutch.Covariate

Note: SeeSection22foranoutlineofeachmodel.

6  |    Functional Ecology MCLENNAN Et AL.

4  | DISCUSSION

This study has shown that different reproductivemodes of thecommon lizard significantly differ in telomere length. The vi-viparousmodehad the longest telomeres (forbothmothersandoffspring), the oviparous mode had the shortest telomeres (forbothmothers and offspring), while the admixed individuals hadrelatively intermediate telomeres (again, for both mothers andoffspring).Sincethesignificantdifferenceintelomerelengthwasalreadyevidentattheoffspringstage,itsuggeststhattherepro-ductive modes have evolved differing telomere dynamics overtime.However, it iscurrentlyunclearwhetherand/orhowthesedifferences in telomere length have co‐evolved with other life‐history traits.We also found thatmothers had relatively longer

telomeresthantheiroffspringamongthereproductiveecotypes.However,wecurrentlydonotknowwhetherthisisduetophysi-ological processes (e.g. telomere elongation mechanisms duringdevelopment;Gomesetal.,2010)ordue to the selectivedisap-pearanceofindividualsbornwithrelativelysmallertelomeres(e.g.Salmón,Nilsson,Watson,Bensch,&Isaksson,2017).

Weinitiallyhypothesizedthattheviviparousmotherswouldhaveahigher reproductive investment (Lindtkeetal.,2010)becauseoftheprolongedpregnancyandpresumedlargerclutchmassinvivipa-rousspecies(Horváthováetal.,2013;Qualls&Shine,1998;Roitbergetal.,2013).However,therelativeclutchmass(asaproxyforrepro-ductive investment)was similarbetween the reproductivemodes.Anotherpotentialcosttoviviparity is thatviviparousfemalesmaybelessabletohuntandacquireresourcesduringpregnancy,whichcouldresultinanetlossofenergy.However,thiswasnotpossible

F I G U R E 1  Therelationshipbetweenmaternalreproductivemodeandthesomaticmassof(a)mothersand(b)offspring.Dataplottedasindividuals+mean.Somaticmassdidnotdiffersignificantlybetweenreproductivemodesatthematernalstage;however,therewasasignificantdifferenceattheoffspringstage,measuredonthedayofbirthorhatching(p<.05;seeTable2)

TA B L E 2  SummaryofthefinalGLMscorrespondingtomodels1,2,3,4,5,7and8

# Explanatory variable Estimate SE t p

1 Maternalmass — — — — —

2 Offspringmass Intercept 0.204 0.010 19.67 <.001

Repro. mode—oviparous 0.044 0.012 3.57 <.001

Repro. mode—viviparous −0.023 0.012 −1.97 .054

3 Clutchsize Intercept 7.154 0.553 12.94 <.001

Repro. mode—oviparous 0.411 0.691 0.60 .554

Repro. mode—viviparous −1.063 0.653 −1.63 .108

4 RCM — — — — —

5 ROM Intercept 0.414 0.034 12.11 <.001

Repro. mode—oviparous 0.086 0.040 2.13 .037

Repro. mode—viviparous −0.140 0.039 −3.62 <.001

7 MaternalRTL Intercept 0.043 0.033 1.28 .204

Repro. mode—oviparous −0.166 0.041 −3.98 <.001

Repro. mode—viviparous 0.118 0.039 3.01 <.001

8 MeanoffspringRTL Intercept −0.077 0.030 −2.52 .014

Repro. mode—oviparous −0.135 0.036 −3.73 <.001

Repro. mode—viviparous 0.146 0.034 4.24 <.001

Note: SeeSection22forfulldefinitionsofthemaineffectsandinteractionsinitiallyincludedineachmodel.SeeSection33foranalysisofvarianceteststatistics.

     |  7Functional EcologyMCLENNAN Et AL.

toquantifyinthisstudy,sincethepregnantfemaleswerefedadlibi-tum.Ithasalsobeensuggestedthatviviparousspecieshavelongerlifespans,comparedtooviparousspecies,andarethereforeableto

producemoreclutchesovertheyears(Meiri,Brown,&Sibly,2012;Tinkle, Wilbur, & Tilley, 1970). However, it is currently unknownwhether thesamealsoapplies tooviparousandviviparousmodes

F I G U R E 2  Therelationshipbetweenmaternalreproductivemodeand(a)relativeclutchmass(clutchmass,includingeggshell,amnioticfluidsandyolk,dividedbyfemalemassafteroviposition/parturition),(b)relativeoffspringmass(summedmassoftheoffspringafterhatching,excludingeggshell,amnioticfluidsandyolk,dividedbyfemalemassafteroviposition/parturition)and(c)thenumberofoffspringwithinaclutch.Dataplottedasindividuals+mean.RCMdidnotdifferbetweenthereproductivemodes;however,therewasasignificantreproductivemodeeffectonROMandclutchsize(p<.05;seeTable2)

# Explanatory variable Estimate SE df t p

6 RTL Intercept 0.035 0.025 74.78 1.35 .18

Repro. mode—oviparous

−0.155 0.031 62.04 −5.00 <.001

Repro. mode—viviparous

0.127 0.029 62.80 4.32 <.001

Lifestage—offspring −0.094 0.017 55.03 −4.67 <.001

Note: FamilyIDwasincludedasarandomfactortocontrolfornon‐independencebetweenmotherandoffspring.Thefamilylevelvariancewas0.0029(SD0.0542),andtheresidualvariancewas0.0083(SD0.091).SeeSection33foranalysisofvarianceteststatistics.Estimatesofmarginal(fixedeffects)andconditional(fixedeffects+randomeffects)R2valueswere0.62and0.72,respectively.

TA B L E 3  Summaryofthelinearmixed‐effectmodel,correspondingtomodel6

F I G U R E 3  Therelationshipbetweenreproductivemodeandrelativetelomerelength(RTL).Circlescorrespondtomothers,whiletrianglescorrespondtotheoffspring.Dataplottedasindividuals + mean

8  |    Functional Ecology MCLENNAN Et AL.

co‐occurringwithinthesamespecies,andwewereunabletoquan-tify theageandpast reproductivehistoryof themother lizards inthisstudy.

Alsoincontrastwithourhypothesis,theviviparousfemaleshadthelongesttelomeres,whiletheoviparousfemaleshadtheshortesttelomeres. Inmammals, telomere length is generally phylogeneti-callyconserved,althoughexceptionstothisdoexist(Gomesetal.,2011,2010). It isunknowntowhatextent thisapplies to reptiles.Onepossibilityisthatdifferingtelomerelengthsincommonlizardshaveevolvedasaneffectofthelife‐historydivergenceamongthereproductivemodes. It isalsopossible thatwewronglypresumedoviparitytocarryalessermaternalburden.Wedidnotfindasignif-icantdifference inmaternalmassamong the reproductivemodes,and a study by Demarco and Guillette (1992) found viviparity tocarry a minimal metabolic cost. Moreover, within a reproductiveseason,oviparousfemalesmightinvestmoreintheiroffspringcom-pared toviviparous females (Recknagel&Elmer,2019).We foundthatROMwaslargerforoviparousfemalescomparedtoviviparousfemales, indicating that oviparous females provide their offspringwithmorenutrients(i.e.yolk).Whilewecouldnotassessthishere,theshortertimeofpregnancymightalsoallowoviparousfemalestoproducemorethanoneclutchperyear(Heulin,Guillaume,Vogrin,Surget‐Groba,&Tadic, 2000; Lindtke et al., 2010), resulting in anevenlargerreproductiveeffortperseasonforoviparousfemales.

It is worth noting that post‐embryonic telomere repair mech-anisms, such as telomerase expression, have been documented inseverallizardspeciestodate(Alibardi,2015;Ujvarietal.,2017).Inaddition, several studieson fishhave foundhigher telomeraseex-pressioninactivelydividingcells(Peterson,Mok,&Au,2015;Yap,Yeoh,Brenner,&Venkatesh,2005).We found that theviviparousoffspringweresignificantlysmallerathatchingbutwereofequiva-lentsizeatthematernallifestage,perhapsduetoanincreasedrateof growth. Therefore, this possible divergence in telomere lengthbetween the reproductivemodesmay have occurred, in part be-causeofdifferencesingrowthrateanditspossibleassociationwithtelomeraseexpression.Longertelomeresinviviparouscommonliz-ardsmightthereforehaveco‐evolvedwith(a)asmallerreproductiveinvestmentperseasonand(b)anincreaseingrowthrateandpoten-tiallyalsolongevity.

Wedonotknowtheageofthematernallizardsandcanthere-fore not rule out possible age effects. It may be that viviparouscommonlizardsdifferintheirlongevityortheirageatmaturity,al-thoughtherearecurrentlynodatatosuggestthis.Telomereshavebeenfoundtoshorten inhumansandother longer‐livedmammalsand birds (Haussmann et al., 2003), in part because many larger,longer‐livedendothermspeciesappear todown‐regulate telomererepairmechanismsinpost‐embryonicsomatictissues,perhapsasatumoursuppressionmechanism(Gomesetal.,2010).However,thedirectionofthetelomere–agerelationshipislesswellestablishedinectothermicspecies,andstudieshavedetectedtelomeraseexpres-sioninanumberofreptile,amphibianandfishspecies(Gomesetal.,2010;Simide,Angelier,Gaillard,&Stier,2016;Ujvarietal.,2017).Therefore,wemayhave identifiedadifference in telomere length

betweenthereproductivemodes,inpartbecauseageatreproduc-tionmayalsodifferamongthemodes.However,ageandbodysizearethoughttobecorrelatedinthecommonlizard(Richard,Lecomte,Fraipont,&Clobert,2005)andweincludedbodymass(highlycor-relatedwith body size) as a covariate in analyses. In addition, theexactsamepatternwasfoundattheoffspringstage,whenagewassimilaramongthereproductivemodes(i.e.dayssincecopulation).

Aswith the adult females,we also found that the viviparousoffspringhadthe longest telomeres, theoviparousoffspringhadtheshortesttelomeres,andtheadmixedoffspringhadintermedi-atetelomerelengths.Hadthisembryonicdevelopmentoccurredinthewild,wemighthavehypothesizedthattheviviparousoffspringhadlongertelomeresbecauseviviparityisthoughttoconfermorestableembryonicconditions(Vedderetal.,2018).However,alloftheembryosinthisstudydevelopedinstableincubatorconditions.While theremay still be some degree of variation in embryonicconditions(e.g.higherlevelofrespiratoryexchangeinthevivipa-rousmode),itisunlikelythatthiscausedtheobserveddifferencesintelomerelength.Thecomplexityoftelomereheritabilityisstillnot fully understood in lizards. It could be that offspring inherittheir telomere lengthvia the initial telomere lengthof the fertil-izedegg(Dugdale&Richardson,2018),presumingthatviviparousmothersalsohavealongergermlinetelomerelength.Additionally,offspring may also be inheriting the genetic information thatcontrols telomere elongation during embryogenesis (Kalmbach,Robinson,Wang,Liu,&Keefe,2014;Liuetal.,2007;Schaetzleinetal.,2004).Forexample,itisthoughtthattheseembryonictelo-mereelongationprogrammesmayrestoretelomerestoasetlength(Schaetzleinetal.,2004);therefore,itispossiblethatthisgeneticinformationhasalsodivergedbetweenthereproductivemodes.

Westillknowrelativelylittleaboutthedeterminantsofspecies‐specific telomere length ranges, and how theymay have evolvedfromspecies‐specifictrade‐offsbetweenlongandshorttelomeres.Itisoftenhardtodisentanglesuchdifferences,inpartbecausespe-ciesdiffersignificantlyinthetypesofenvironmentthattheyinhabit.However,bystudyingauniquecommonlizardpopulationthatexhib-itsbothoviparousandviviparousreproductioninthesamehabitat,we have identified potential links between life‐history divergenceandtelomerelength,suggestingthatpopulationssuchasthesemayprovefruitfulinfuturestudies.Itwouldalsonowbeinterestingtoexaminewhetherthedifferenceintelomere lengthbetweenovip-arous and viviparous individualsmay affect long‐term patterns ofsenescenceandlongevity.

ACKNOWLEDG EMENTS

WethankA.Adam,M.CapstickandW.Bonerforadviceandhelpwiththelaboratoryanalyses.WewouldalsoliketothankM.Layton,M.Sutherland,H.LeitaoandAlpenferienparkReisachforassistancein the field.AllprocedureswerecarriedoutunderpermitnumberHE3‐NS‐959/2013(012/2016).ThetelomereanalyseswerefundedbyaGlasgowNaturalHistorySocietyBlodwenLloydBinnssmallre-searchgrant,awardedtoD.M.andH.R.Duringtheperiodofdata

     |  9Functional EcologyMCLENNAN Et AL.

collection, analysis andwritingof this paper,D.M.was fundedbyERCAdvancedGrant322784andH.R.byaUniversityofGlasgowLordKelvin‐AdamSmith PhD Studentship and aNERC grantNE/N003942/1.

AUTHOR ' S CONTRIBUTIONS

D.M.,H.R.,K.R.E.andP.M.conceivedoftheideaforthisstudy.H.R.ledthefieldaspectofthestudy.D.M.andH.R.conductedlaboratoryanalyses.D.M.andH.R.leddataanalysisandwritingofthemanu-script, with critical contribution from K.R.E. and P.M. All authorsgavefinalapprovalforpublication.

DATA AVAIL ABILIT Y S TATEMENT

Data are available via the Dryad Digital Repository https://doi.org/10.5061/dryad.712hc6m (McLennan, Recknagel, Elmer, &Monaghan,2019).

ORCID

Darryl McLennan https://orcid.org/0000‐0002‐8566‐9437

Hans Recknagel https://orcid.org/0000‐0003‐2728‐0690

Kathryn R. Elmer https://orcid.org/0000‐0002‐9219‐7001

R E FE R E N C E S

Alibardi,L. (2015). Immunolocalizationofthetelomerase‐1componentincellsoftheregeneratingtail,testis,andintestineoflizards.Journal of Morphology,276,748–758.https://doi.org/10.1002/jmor.20375

Arrayago,M.‐J.,Bea,A.,&Heulin,B. (1996).HybridizationexperimentbetweenoviparousandviviparousstrainsofLacerta vivipara: A new insightintotheevolutionofviviparityinreptiles.Herpetologica,52,333–342.

Bailey,N.W.,Gray,B.,&Zuk,M.(2010).Acousticexperienceshapesal-ternativemating tactics and reproductive investment inmale fieldcrickets. Current Biology, 20, 845–849. https://doi.org/10.1016/j.cub.2010.02.063

Barnes,R.P.,Fouquerel,E.,&Opresko,P.L.(2018).Theimpactofoxida-tiveDNAdamageandstressontelomerehomeostasis.Mechanisms of Ageing and Development, 177, 37–45. https://doi.org/10.1016/j.mad.2018.03.013

Bates, D.,Maechler,M., Bolker, B., &Walker, S. (2015). Fitting linearmixed‐effectsmodelsusing lme4.Journal of Statistical Software,67,1–48.

Baum, D., Laughton, R., Armstrong, J. D., & Metcalfe, N. B. (2004).Altitudinalvariationintherelationshipbetweengrowthandmatura-tionrateinsalmonparr.Journal of Animal Ecology,73,253–260.https://doi.org/10.1111/j.0021‐8790.2004.00803.x

Blackburn,D.G. (1999).Areviviparityandegg‐guardingevolutionarilylabileinsquamates?Herpetologica,55,556–573.

Blackburn,E.H.(1991).Structureandfunctionoftelomeres.Nature,350,569–573.https://doi.org/10.1038/350569a0

Boonekamp,J.J.,Bauch,C.,Mulder,E.,&Verhulst,S.(2017).Doesoxi-dativestressshortentelomeres?Biology Letters,13,20170164.https://doi.org/10.1098/rsbl.2017.0164

Boonekamp,J.J.,Mulder,G.A.,Salomons,H.M.,Dijkstra,C.,&Verhulst,S. (2014). Nestling telomere shortening, but not telomere length,

reflects developmental stress and predicts survival in wild birds.Proceedings of the Royal Society B: Biological Sciences,281,20133287.https://doi.org/10.1098/rspb.2013.3287

Bouwhuis,S.,Verhulst,S.,Bauch,C.,&Vedder,O.(2018).Reducedtelo-merelengthinoffspringofoldfathersinalong‐livedseabird.Biology Letters,14,20180213.https://doi.org/10.1098/rsbl.2018.0213

Bronikowski,A.M.,&Arnold,S.J. (1999).TheevolutionaryecologyoflifehistoryvariationinthegartersnakeThamnophis elegans. Ecology,80,2314–2325.

Cawthon,R.M.(2002).TelomeremeasurementbyquantitativePCR.Nucleic Acids Research,30(10),e47.https://doi.org/10.1093/nar/30.10.e47

Cornetti, L., Belluardo, F., Ghielmi, S., Giovine, G., Ficetola, G. F.,Bertorelle, G., … Hauffe, H. C. (2015). Reproductive isolation be-tweenoviparousandviviparouslineagesoftheEurasiancommonliz-ard Zootoca viviparainacontactzone.Biological Journal of the Linnean Society,114,566–573.

Cram, D. L., Monaghan, P., Gillespie, R., & Clutton‐Brock, T. (2017).Effectsofearly‐lifecompetitionandmaternalnutritionontelomerelengthsinwildmeerkats.Proceedings of the Royal Society B: Biological Sciences,284,20171383.https://doi.org/10.1098/rspb.2017.1383

Debes,P.V.,Visse,M.,Panda,B.,Ilmonen,P.,&Vasemagi,A.(2016).Istelomere length amolecularmarker of past thermal stress inwildfish? Molecular Ecology, 25, 5412–5424. https://doi.org/10.1111/mec.13856

Demarco,V.,&Guillette,L.J.Jr(1992).Physiologicalcostofpregnancyinaviviparouslizard(Sceloporus jarrovi).Journal of Experimental Zoology,262,383–390.https://doi.org/10.1002/jez.1402620404

Dugdale,H.L.,&Richardson,D.S.(2018).Heritabilityoftelomerevari-ation: It is all about the environment!.Philosophical Transactions of the Royal Society B: Biological Sciences,373, 20160450. https://doi.org/10.1098/rstb.2016.0450

Dupoué,A., Rutschmann,A., LeGalliard, J. F.,Clobert, J.,Angelier, F.,Marciau,C.,…Meylan,S.(2017).Shortertelomeresprecedepopula-tionextinctioninwildlizards.Scientific Reports,7,16976.https://doi.org/10.1038/s41598‐017‐17323‐z

Epel,E.S.,Blackburn,E.H.,Lin,J.,Dhabhar,F.S.,Adler,N.E.,Morrow,J. D., & Cawthon, R. M. (2004). Accelerated telomere shorteningin response to life stress. Proceedings of the National Academy of Sciences of the United States of America,101,17312–17315.https://doi.org/10.1073/pnas.0407162101

Gomes, N. M., Ryder, O. A., Houck, M. L., Charter, S. J.,Walker,W.,Forsyth,N.R.,…Wright,W.E.(2011).Comparativebiologyofmam-malian telomeres: Hypotheses on ancestral states and the rolesof telomeres in longevity determination. Aging Cell, 10, 761–768. https://doi.org/10.1111/j.1474‐9726.2011.00718.x

Gomes,N.M.V.,Shay,J.W.,&Wright,W.E.(2010).TelomerebiologyinMetazoa.FEBS Letters,584,3741–3751.https://doi.org/10.1016/j.febslet.2010.07.031

Haussmann, M. F.,Winkler, D.W., O'Reilly, K. M., Huntington, C. E.,Nisbet,I.C.T.,&Vleck,C.M.(2003).Telomeresshortenmoreslowlyinlong‐livedbirdsandmammalsthaninshort‐livedones.Proceedings of the Royal Society B: Biological Sciences,270,1387–1392.https://doi.org/10.1098/rspb.2003.2385

Hellemans,J.,Mortier,G.,DePaepe,A.,Speleman,F.,&Vandesompele,J.(2007).qBaserelativequantificationframeworkandsoftwareformanagementandautomatedanalysisofreal‐timequantitativePCRdata.Genome Biology,8,R19.

Heulin, B. (1990). Étude comparative de lamembrane coquillère chezlessouchesovipareetviviparedulézardLacerta vivipara. Canadian Journal of Zoology,68,1015–1019.

Heulin, B., Guillaume, C. P., Vogrin, N., Surget‐Groba, Y., & Tadic, Z.(2000).FurtherevidenceoftheexistenceofoviparouspopulationsofLacerta (Zootoca) viviparaintheNWoftheBalkanPeninsula.Comptes Rendus de l Académie des Sciences – Series III – Sciences de la Vie,323,461–468.https://doi.org/10.1016/S0764‐4469(00)00155‐4

10  |    Functional Ecology MCLENNAN Et AL.

Horváthová,T.,Cooney,C.R.,Fitze,P.S.,Oksanen,T.A.,Jelić,D.,Ghira,I.,…Jandzik,D.(2013).Lengthofactivityseasondrivesgeographicvariation in body size of a widely distributed lizard. Ecology and Evolution,3,2424–2442.https://doi.org/10.1002/ece3.613

Kalmbach,K.,Robinson,L.G.,Wang,F.,Liu,L.,&Keefe,D.(2014).Telomerelengthreprogramming inembryosandstemcells.BioMed Research International,2014,925121.https://doi.org/10.1155/2014/925121

Keefe,D.,Kumar,M.,&Kalmbach,K.(2015).Oocytecompetencyisthekeytoembryopotential.Fertility and Sterility,103,317–322.https://doi.org/10.1016/j.fertnstert.2014.12.115

Kuznetsova,A.,Brockhoff,P.B.,&Christensen,R.H.B.(2014).lmerTest:Tests for randomand fixed effects for linearmixed effectmodels(lmerobjectsoflme4package).Rpackageversion2.0‐11.

Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., & Harley,C. B. (1992). Telomere end‐replication problem and cellaging. Journal of Molecular Biology, 225, 951–960. https://doi.org/10.1016/0022‐2836(92)90096‐3

Lindtke,D.,Mayer,W.,&Böhme,W.(2010).Identificationofacontactzonebetweenoviparousandviviparouscommonlizards(Zootoca vi-vipara)incentralEurope:Reproductivestrategiesandnaturalhybrid-ization.Salamandra,46,73–82.

Liu,L.,Bailey,S.M.,Okuka,M.,Munoz,P.,Li,C.,Zhou,L. J.,…Keefe,D.L.(2007).Telomerelengtheningearlyindevelopment.Nature Cell Biology,9,1436–1441.https://doi.org/10.1038/ncb1664

McLennan,D.,Armstrong,J.D.,Stewart,D.C.,McKelvey,S.,Boner,W.,Monaghan,P.,&Metcalfe,N.B.(2016).Interactionsbetweenparen-tal traits,environmentalharshnessandgrowthrate indeterminingtelomerelengthinwildjuvenilesalmon.Molecular Ecology,25,5425–5438.https://doi.org/10.1111/mec.13857

McLennan,D.,Armstrong,J.D.,Stewart,D.C.,McKelvey,S.,Boner,W.,Monaghan,P.,&Metcalfe,N.B.(2018a).Linksbetweenparentallifehistoriesofwildsalmonandthetelomerelengthsoftheiroffspring.Molecular Ecology,27,804–814.https://doi.org/10.1111/mec.14467

McLennan,D.,Armstrong,J.D.,Stewart,D.C.,McKelvey,S.,Boner,W.,Monaghan,P.,&Metcalfe,N.B.(2018b).TelomereelongationduringearlydevelopmentisindependentofenvironmentaltemperaturesinAtlanticsalmon.The Journal of Experimental Biology,221,jeb178616.https://doi.org/10.1242/jeb.178616

McLennan,D.,Recknagel,H.,Elmer,K.R.,&Monaghan,P.(2019).Datafrom:Distincttelomeredifferenceswithinareproductivelybimodalcommon lizard population. Dryad Digital Repository, https://doi.org/10.5061/dryad.712hc6m

Meiri,S.,Brown,J.H.,&Sibly,R.M.(2012).Theecologyoflizardrepro-ductiveoutput.Global Ecology and Biogeography,21,592–602.https://doi.org/10.1111/j.1466‐8238.2011.00700.x

Metcalfe, N. B., & Monaghan, P. (2003). Growth versus lifespan:Perspectives from evolutionary ecology. Experimental Gerontology,38,935–940.https://doi.org/10.1016/S0531‐5565(03)00159‐1

Meunier,J.,Wong,J.W.Y.,Gómez,Y.,Kuttler,S.,Röllin,L.,Stucki,D.,&Kölliker,M. (2012).One clutchor twoclutches?Fitness correlatesof coexisting alternative female life‐histories in the European ear-wig. Evolutionary Ecology, 26, 669–682. https://doi.org/10.1007/s10682‐011‐9510‐x

Monaghan,P.(2010).Telomeresandlifehistories:Thelongandtheshortof it.Annals of the New York Academy of Sciences,1206, 130–142.https://doi.org/10.1111/j.1749‐6632.2010.05705.x

Monaghan, P. (2014). Organismal stress, telomeres and life histories.Journal of Experimental Biology,217,57–66.https://doi.org/10.1242/jeb.090043

Monaghan, P., & Ozanne, S. E. (2018). Somatic growth and telomeredynamics in vertebrates: Relationships, mechanisms and conse-quences.Philosophical Transactions of the Royal Society B: Biological Sciences,373,20160446.

Murphy,B.F.,&Thompson,M.B. (2011).Areviewoftheevolutionofviviparityinsquamatereptiles:Thepast,presentandfutureroleof

molecularbiologyandgenomics.Journal of Comparative Physiology B,181,575–594.https://doi.org/10.1007/s00360‐011‐0584‐0

Noguera, J. C., Metcalfe, N. B., Reichert, S., & Monaghan, P. (2016).Embryonic and postnatal telomere length decrease with ovula-tion orderwithin clutches.Scientific Reports,6, 25915. https://doi.org/10.1038/srep25915

Olsson, M., Friesen, C. R., Rollings, N., Sudyka, J., Lindsay, W.,Whittington,C.M.,&Wilson,M. (2018). Long‐termeffectsof su-peroxideandDNArepaironlizardtelomeres.Molecular Ecology,27,5154–5164.https://doi.org/10.1111/mec.14913

Olsson,M.,Pauliny,A.,Wapstra,E.,&Blomqvist,D. (2010).Proximatedeterminants of telomere length in sand lizards (Lacerta agilis).Biology Letters,6,651–653.

Partridge,C.G.,MacManes,M.D.,Knapp,R.,&Neff,B.D.(2016).Braintranscriptionalprofilesofmalealternativereproductivetacticsandfemales in bluegill sunfish. PLoS ONE, 11, e0167509. https://doi.org/10.1371/journal.pone.0167509

Peterson, D. R., Mok, H. O. L., & Au, D. W. T. (2015). Modulationof telomerase activity in fish muscle by biological and environ-mental factors. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology,178,51–59.https://doi.org/10.1016/j.cbpc.2015.09.004

Qualls,C.P.,&Shine,R.(1995).Maternalbody‐volumeasaconstraintonreproductiveoutputinlizards:Evidencefromtheevolutionofvivi-parity.Oecologia,103,73–78.https://doi.org/10.1007/BF00328427

Qualls, C. P., & Shine, R. (1998). Costs of reproduction in conspecificoviparousandviviparouslizards,Lerista bougainvillii. Oikos,82,539–551.https://doi.org/10.2307/3546374

Recknagel,H. (2018).Environmental constraints and genetic basis for the evolution of viviparity.PhDThesis,Doctoral,UniversityofGlasgow.

Recknagel, H., & Elmer, K. R. (2019). Differential reproductive in-vestment in co‐occurring oviparous and viviparous common liz-ards (Zootoca vivipara) and implications for life history trade‐offswith viviparity. Oecologia, 190, 85–98. https://doi.org/10.1007/s00442-019-04398-w

Recknagel,H.,Kamenos,N.A.,&Elmer,K.R. (2018).Common lizardsbreak Dollo's law of irreversibility: Genome‐wide phylogenomicssupport a single origin of viviparity and re‐evolution of oviparity.Molecular Phylogenetics and Evolution, 127, 579–588. https://doi.org/10.1016/j.ympev.2018.05.029

Reichert,S.,Criscuolo,F.,Verinaud,E.,Zahn,S.,&Massemin,S.(2013).Telomere lengthcorrelationsamong somatic tissues in adult zebrafinches. PLoS ONE, 8, e81496. https://doi.org/10.1371/journal.pone.0081496

Reichert,S.,&Stier,A.(2017).Doesoxidativestressshortentelomeresin vivo?Areview.Biology Letters,13,20170463.

Richard,M.,Lecomte,J.,DeFraipont,M.,&Clobert,J.(2005).Age‐specificmating strategies and reproductive senescence.Molecular Ecology,14,3147–3155.https://doi.org/10.1111/j.1365‐294X.2005.02662.x

Roitberg,E.S.,Kuranova,V.N.,Bulakhova,N.A.,Orlova,V.F.,Eplanova,G.V.,Zinenko,O.I.,…Yakovlev,V.A.(2013).Variationofreproductivetraitsandfemalebodysizeinthemostwidely‐rangingterrestrialreptile:Testingthe effects of reproductive mode, lineage, and climate. Evolutionary Biology,40,420–438.https://doi.org/10.1007/s11692‐013‐9247‐2

Rollings, N., Friesen, C. R., Sudyka, J., Whittington, C., Giraudeau, M.,Wilson,M.,&Olsson,M. (2017).Telomeredynamics ina lizardwithmorph‐specificreproductiveinvestmentandself‐maintenance.Ecology and Evolution,7,5163–5169.https://doi.org/10.1002/ece3.2712

Rollings,N.,Friesen,C.R.,Whittington,C.M.,Johansson,R.,Shine,R.,&Olsson,M.(2019).Sex‐Andtissue‐specificdifferencesintelomerelengthinareptile.Ecology and Evolution,9(11),6211–6219.https://doi.org/10.1002/ece1003.5164

Salmón, P., Nilsson, J. F., Nord, A., Bensch, S., & Isaksson, C. (2016).Urbanenvironmentshortenstelomere length innestlinggreattits,Parus major. Biology Letters,12,20160155.

     |  11Functional EcologyMCLENNAN Et AL.

Salmón,P.,Nilsson,J.F.,Watson,H.,Bensch,S.,&Isaksson,C.(2017).Selectivedisappearanceofgreattitswithshorttelomeresinurbanareas. Proceedings of the Royal Society B: Biological Sciences, 284,20171349.https://doi.org/10.1098/rspb.2017.1349

Schaetzlein, S., Lucas‐Hahn, A., Lemme, E., Kues, W. A., Dorsch, M.,Manns, M. P., … Rudolph, K. L. (2004). Telomere length is resetduringearlymammalianembryogenesis.Proceedings of the National Academy of Sciences of the United States of America,101,8034–8038.https://doi.org/10.1073/pnas.0402400101

Shine, R. (1995). A new hypothesis for the evolution of viviparityin reptiles. The American Naturalist, 145, 809–823. https://doi.org/10.1086/285769

Simide,R.,Angelier,F.,Gaillard,S.,&Stier,A.(2016).Ageandheatstressasdeterminantsoftelomerelengthinalong‐livedfish,theSiberiansturgeon.Physiological and Biochemical Zoology,89,441–447.https://doi.org/10.1086/687378

Sites,J.W.,Reeder,T.W.,&Wiens,J.J.(2011).Phylogeneticinsightsonevolutionarynoveltiesinlizardsandsnakes:Sex,birth,bodies,niches,and venom. Annual Review of Ecology, Evolution, and Systematics,42,227–244.https://doi.org/10.1146/annurev‐ecolsys‐102710‐145051

Surget‐Groba, Y., Heulin, B., Guillaume, C.‐P., Puky, M., Semenov,D., Orlova, V., … Smajda, B. (2006). Multiple origins of vivipar-ity, or reversal from viviparity to oviparity? The European com-mon lizard (Zootoca vivipara, Lacertidae) and the evolution of par-ity. Biological Journal of the Linnean Society, 87, 1–11. https://doi.org/10.1111/j.1095‐8312.2006.00552.x

Taborsky,M.,&Brockmann,H.J.(2010).Alternativereproductivetacticsand lifehistoryphenotypes. InP.Kappeler (Ed.),Animal behaviour: Evolution and mechanisms(pp.537–586).Berlin,Heidelberg:Springer.

Tian,X.,Doerig,K.,Park,R.,CanRanQin,A.,Hwang,C.,Neary,A.,…Gorbunova,V.(2018).Evolutionoftelomeremaintenanceandtumoursuppressor mechanisms across mammals. Philosophical Transactions of the Royal Society B: Biological Sciences,373,20160443.https://doi.org/10.1098/rstb.2016.0443

Tinkle,D.W.,Wilbur,H.M.,& Tilley, S.G. (1970). Evolutionary strat-egies in lizard reproduction. Evolution, 24, 55–74. https://doi.org/10.1111/j.1558‐5646.1970.tb01740.x

Tsubaki,Y.,Hooper,R.E.,&Siva‐Jothy,M.T.(1997).Differencesinadultand reproductive lifespan in the twomale formsofMnais pruinosa costalis selys (Odonata: Calopterygidae). Researches on Population Ecology,39,149–155.https://doi.org/10.1007/BF02765260

Ujvari,B.,Biro,P.A.,Charters,J.E.,Brown,G.,Heasman,K.,Beckmann,C., & Madsen, T. (2017). Curvilinear telomere length dynamics ina squamate reptile. Functional Ecology, 31, 753–759. https://doi.org/10.1111/1365‐2435.12764

Vedder,O.,Verhulst,S.,Zuidersma,E.,&Bouwhuis,S.(2018).Embryonicgrowthrateaffectstelomereattrition:Anexperimentinawildbird.The Journal of Experimental Biology, 221, jeb181586. https://doi.org/10.1242/jeb.181586

Wilbourn,R.V.,Moatt, J. P., Froy,H.,Walling,C.A.,Nussey,D.H.,&Boonekamp,J.J.(2018).Therelationshipbetweentelomerelengthandmortalityriskinnon‐modelvertebratesystems:Ameta‐analysis.Philosophical Transactions of the Royal Society B: Biological Sciences,373(1741),20160447–https://doi.org/10.1098/rstb.2016.0447

Wourms, J. P., & Lombardi, J. (1992). Reflections on the evolution ofpiscine viviparity. American Zoologist, 32, 276–293. https://doi.org/10.1093/icb/32.2.276

Yap,W.H.,Yeoh,E.,Brenner,S.,&Venkatesh,B.(2005).Cloningandex-pressionofthereversetranscriptasecomponentofpufferfish(Fugu rubripes)telomerase.Gene,353,207–217.https://doi.org/10.1016/j.gene.2005.04.038

Zamudio, K., & Chan, L. (2008). Alternative reproductive tactics inamphibians. In R. Oliveira, M. Taborsky, & H. Brockmann (Eds.),Alternative reproductive tactics: An integrative approach (pp. 300–331).Cambridge:CambridgeUniversityPress.

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:McLennanD,RecknagelH,ElmerKR,MonaghanP.Distincttelomeredifferenceswithinareproductivelybimodalcommonlizardpopulation.Funct Ecol. 2019;00:1–11. https://doi.org/10.1111/1365‐2435.13408