Discrete Mathematics - Predicates and Sets

Post on 05-Dec-2014

10.182 views 2 download

description

Predicates, quantifiers. Sets, subsets, power sets, set operations, laws of set theory, principle of inclusion-exclusion.

Transcript of Discrete Mathematics - Predicates and Sets

Discrete MathematicsPredicates and Sets

H. Turgut Uyar Aysegul Gencata Yayımlı Emre Harmancı

2001-2013

License

c©2001-2013 T. Uyar, A. Yayımlı, E. Harmancı

You are free:

to Share – to copy, distribute and transmit the work

to Remix – to adapt the work

Under the following conditions:

Attribution – You must attribute the work in the manner specified by the author or licensor (but not in anyway that suggests that they endorse you or your use of the work).

Noncommercial – You may not use this work for commercial purposes.

Share Alike – If you alter, transform, or build upon this work, you may distribute the resulting work onlyunder the same or similar license to this one.

Legal code (the full license):http://creativecommons.org/licenses/by-nc-sa/3.0/

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Predicate

Definition

predicate (or open statement): a declarative sentence which

contains one or more variables, and

is not a proposition, but

becomes a proposition when the variables in itare replaced by certain allowable choices

Universe of Discourse

Definition

universe of discourse: Uset of allowable choices

examples:

Z: integersN: natural numbersZ+: positive integersQ: rational numbersR: real numbersC: complex numbers

Universe of Discourse

Definition

universe of discourse: Uset of allowable choices

examples:

Z: integersN: natural numbersZ+: positive integersQ: rational numbersR: real numbersC: complex numbers

Predicate Examples

Example

U = Np(x): x + 2 is an even integer

p(5): Fp(8): T

¬p(x): x + 2 is not an even integer

Example

U = Nq(x , y): x + y and x − 2y are even integers

q(11, 3): F , q(14, 4): T

Predicate Examples

Example

U = Np(x): x + 2 is an even integer

p(5): Fp(8): T

¬p(x): x + 2 is not an even integer

Example

U = Nq(x , y): x + y and x − 2y are even integers

q(11, 3): F , q(14, 4): T

Predicate Examples

Example

U = Np(x): x + 2 is an even integer

p(5): Fp(8): T

¬p(x): x + 2 is not an even integer

Example

U = Nq(x , y): x + y and x − 2y are even integers

q(11, 3): F , q(14, 4): T

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Quantifiers

Definition

existential quantifier:predicate is true for some values

symbol: ∃read: there exists

symbol: ∃!read: there exists only one

Definition

universal quantifier:predicate is true for all values

symbol: ∀read: for all

Quantifiers

Definition

existential quantifier:predicate is true for some values

symbol: ∃read: there exists

symbol: ∃!read: there exists only one

Definition

universal quantifier:predicate is true for all values

symbol: ∀read: for all

Quantifiers

Definition

existential quantifier:predicate is true for some values

symbol: ∃read: there exists

symbol: ∃!read: there exists only one

Definition

universal quantifier:predicate is true for all values

symbol: ∀read: for all

Quantifiers

existential quantifier

U = {x1, x2, . . . , xn}∃x p(x) ≡ p(x1) ∨ p(x2) ∨ · · · ∨ p(xn)

p(x) is true for some x

universal quantifier

U = {x1, x2, . . . , xn}∀x p(x) ≡ p(x1) ∧ p(x2) ∧ · · · ∧ p(xn)

p(x) is true for all x

Quantifiers

existential quantifier

U = {x1, x2, . . . , xn}∃x p(x) ≡ p(x1) ∨ p(x2) ∨ · · · ∨ p(xn)

p(x) is true for some x

universal quantifier

U = {x1, x2, . . . , xn}∀x p(x) ≡ p(x1) ∧ p(x2) ∧ · · · ∧ p(xn)

p(x) is true for all x

Quantifier Examples

Example

U = R

p(x) : x ≥ 0

q(x) : x2 ≥ 0

r(x) : (x − 4)(x + 1) = 0

s(x) : x2 − 3 > 0

are the following expressions true?

∃x [p(x) ∧ r(x)]

∀x [p(x) → q(x)]

∀x [q(x) → s(x)]

∀x [r(x) ∨ s(x)]

∀x [r(x) → p(x)]

Quantifier Examples

Example

U = R

p(x) : x ≥ 0

q(x) : x2 ≥ 0

r(x) : (x − 4)(x + 1) = 0

s(x) : x2 − 3 > 0

are the following expressions true?

∃x [p(x) ∧ r(x)]

∀x [p(x) → q(x)]

∀x [q(x) → s(x)]

∀x [r(x) ∨ s(x)]

∀x [r(x) → p(x)]

Quantifier Examples

Example

U = R

p(x) : x ≥ 0

q(x) : x2 ≥ 0

r(x) : (x − 4)(x + 1) = 0

s(x) : x2 − 3 > 0

are the following expressions true?

∃x [p(x) ∧ r(x)]

∀x [p(x) → q(x)]

∀x [q(x) → s(x)]

∀x [r(x) ∨ s(x)]

∀x [r(x) → p(x)]

Quantifier Examples

Example

U = R

p(x) : x ≥ 0

q(x) : x2 ≥ 0

r(x) : (x − 4)(x + 1) = 0

s(x) : x2 − 3 > 0

are the following expressions true?

∃x [p(x) ∧ r(x)]

∀x [p(x) → q(x)]

∀x [q(x) → s(x)]

∀x [r(x) ∨ s(x)]

∀x [r(x) → p(x)]

Quantifier Examples

Example

U = R

p(x) : x ≥ 0

q(x) : x2 ≥ 0

r(x) : (x − 4)(x + 1) = 0

s(x) : x2 − 3 > 0

are the following expressions true?

∃x [p(x) ∧ r(x)]

∀x [p(x) → q(x)]

∀x [q(x) → s(x)]

∀x [r(x) ∨ s(x)]

∀x [r(x) → p(x)]

Quantifier Examples

Example

U = R

p(x) : x ≥ 0

q(x) : x2 ≥ 0

r(x) : (x − 4)(x + 1) = 0

s(x) : x2 − 3 > 0

are the following expressions true?

∃x [p(x) ∧ r(x)]

∀x [p(x) → q(x)]

∀x [q(x) → s(x)]

∀x [r(x) ∨ s(x)]

∀x [r(x) → p(x)]

Negating Quantifiers

replace ∀ with ∃, and ∃ with ∀negate the predicate

¬∃x p(x) ⇔ ∀x ¬p(x)

¬∃x ¬p(x) ⇔ ∀x p(x)

¬∀x p(x) ⇔ ∃x ¬p(x)

¬∀x ¬p(x) ⇔ ∃x p(x)

Negating Quantifiers

replace ∀ with ∃, and ∃ with ∀negate the predicate

¬∃x p(x) ⇔ ∀x ¬p(x)

¬∃x ¬p(x) ⇔ ∀x p(x)

¬∀x p(x) ⇔ ∃x ¬p(x)

¬∀x ¬p(x) ⇔ ∃x p(x)

Negating Quantifiers

Theorem

¬∃x p(x) ⇔ ∀x ¬p(x)

Proof.

¬∃x p(x) ≡ ¬[p(x1) ∨ p(x2) ∨ · · · ∨ p(xn)]

⇔ ¬p(x1) ∧ ¬p(x2) ∧ · · · ∧ ¬p(xn)

≡ ∀x ¬p(x)

Negating Quantifiers

Theorem

¬∃x p(x) ⇔ ∀x ¬p(x)

Proof.

¬∃x p(x) ≡ ¬[p(x1) ∨ p(x2) ∨ · · · ∨ p(xn)]

⇔ ¬p(x1) ∧ ¬p(x2) ∧ · · · ∧ ¬p(xn)

≡ ∀x ¬p(x)

Negating Quantifiers

Theorem

¬∃x p(x) ⇔ ∀x ¬p(x)

Proof.

¬∃x p(x) ≡ ¬[p(x1) ∨ p(x2) ∨ · · · ∨ p(xn)]

⇔ ¬p(x1) ∧ ¬p(x2) ∧ · · · ∧ ¬p(xn)

≡ ∀x ¬p(x)

Negating Quantifiers

Theorem

¬∃x p(x) ⇔ ∀x ¬p(x)

Proof.

¬∃x p(x) ≡ ¬[p(x1) ∨ p(x2) ∨ · · · ∨ p(xn)]

⇔ ¬p(x1) ∧ ¬p(x2) ∧ · · · ∧ ¬p(xn)

≡ ∀x ¬p(x)

Predicate Equivalences

Theorem

∃x [p(x) ∨ q(x)] ⇔ ∃x p(x) ∨ ∃x q(x)

Theorem

∀x [p(x) ∧ q(x)] ⇔ ∀x p(x) ∧ ∀x q(x)

Predicate Equivalences

Theorem

∃x [p(x) ∨ q(x)] ⇔ ∃x p(x) ∨ ∃x q(x)

Theorem

∀x [p(x) ∧ q(x)] ⇔ ∀x p(x) ∧ ∀x q(x)

Predicate Implications

Theorem

∀x p(x) ⇒ ∃x p(x)

Theorem

∃x [p(x) ∧ q(x)] ⇒ ∃x p(x) ∧ ∃x q(x)

Theorem

∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]

Predicate Implications

Theorem

∀x p(x) ⇒ ∃x p(x)

Theorem

∃x [p(x) ∧ q(x)] ⇒ ∃x p(x) ∧ ∃x q(x)

Theorem

∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]

Predicate Implications

Theorem

∀x p(x) ⇒ ∃x p(x)

Theorem

∃x [p(x) ∧ q(x)] ⇒ ∃x p(x) ∧ ∃x q(x)

Theorem

∀x p(x) ∨ ∀x q(x) ⇒ ∀x [p(x) ∨ q(x)]

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Multiple Quantifiers

∃x∃y p(x , y)

∀x∃y p(x , y)

∃x∀y p(x , y)

∀x∀y p(x , y)

Multiple Quantifier Examples

Example

U = Zp(x , y) : x + y = 17

∀x∃y p(x , y):for every x there exists a y such that x + y = 17

∃y∀x p(x , y):there exists a y so that for all x , x + y = 17

what if U = N?

Multiple Quantifier Examples

Example

U = Zp(x , y) : x + y = 17

∀x∃y p(x , y):for every x there exists a y such that x + y = 17

∃y∀x p(x , y):there exists a y so that for all x , x + y = 17

what if U = N?

Multiple Quantifier Examples

Example

U = Zp(x , y) : x + y = 17

∀x∃y p(x , y):for every x there exists a y such that x + y = 17

∃y∀x p(x , y):there exists a y so that for all x , x + y = 17

what if U = N?

Multiple Quantifier Examples

Example

U = Zp(x , y) : x + y = 17

∀x∃y p(x , y):for every x there exists a y such that x + y = 17

∃y∀x p(x , y):there exists a y so that for all x , x + y = 17

what if U = N?

Multiple Quantifiers

Example

Ux = {1, 2} ∧ Uy = {A,B}

∃x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∨ [p(2,A) ∨ p(2,B)]

∃x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∨ [p(2,A) ∧ p(2,B)]

∀x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∧ [p(2,A) ∨ p(2,B)]

∀x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∧ [p(2,A) ∧ p(2,B)]

Multiple Quantifiers

Example

Ux = {1, 2} ∧ Uy = {A,B}

∃x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∨ [p(2,A) ∨ p(2,B)]

∃x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∨ [p(2,A) ∧ p(2,B)]

∀x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∧ [p(2,A) ∨ p(2,B)]

∀x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∧ [p(2,A) ∧ p(2,B)]

Multiple Quantifiers

Example

Ux = {1, 2} ∧ Uy = {A,B}

∃x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∨ [p(2,A) ∨ p(2,B)]

∃x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∨ [p(2,A) ∧ p(2,B)]

∀x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∧ [p(2,A) ∨ p(2,B)]

∀x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∧ [p(2,A) ∧ p(2,B)]

Multiple Quantifiers

Example

Ux = {1, 2} ∧ Uy = {A,B}

∃x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∨ [p(2,A) ∨ p(2,B)]

∃x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∨ [p(2,A) ∧ p(2,B)]

∀x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∧ [p(2,A) ∨ p(2,B)]

∀x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∧ [p(2,A) ∧ p(2,B)]

Multiple Quantifiers

Example

Ux = {1, 2} ∧ Uy = {A,B}

∃x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∨ [p(2,A) ∨ p(2,B)]

∃x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∨ [p(2,A) ∧ p(2,B)]

∀x∃y p(x , y) ≡ [p(1,A) ∨ p(1,B)] ∧ [p(2,A) ∨ p(2,B)]

∀x∀y p(x , y) ≡ [p(1,A) ∧ p(1,B)] ∧ [p(2,A) ∧ p(2,B)]

References

Required Reading: Grimaldi

Chapter 2: Fundamentals of Logic

2.4. The Use of Quantifiers

Supplementary Reading: O’Donnell, Hall, Page

Chapter 7: Predicate Logic

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Set

Definition

set: a collection of elements that are

distinct

unordered

non-repeating

Set Representation

explicit representationelements are listed within braces: {a1, a2, . . . , an}

implicit representationelements that validate a predicate: {x |x ∈ G , p(x)}

∅: empty set

let S be a set, and a be an element

a ∈ S : a is an element of set Sa /∈ S : a is not an element of set S

|S |: number of elements (cardinality)

Set Representation

explicit representationelements are listed within braces: {a1, a2, . . . , an}

implicit representationelements that validate a predicate: {x |x ∈ G , p(x)}

∅: empty set

let S be a set, and a be an element

a ∈ S : a is an element of set Sa /∈ S : a is not an element of set S

|S |: number of elements (cardinality)

Set Representation

explicit representationelements are listed within braces: {a1, a2, . . . , an}

implicit representationelements that validate a predicate: {x |x ∈ G , p(x)}

∅: empty set

let S be a set, and a be an element

a ∈ S : a is an element of set Sa /∈ S : a is not an element of set S

|S |: number of elements (cardinality)

Set Representation

explicit representationelements are listed within braces: {a1, a2, . . . , an}

implicit representationelements that validate a predicate: {x |x ∈ G , p(x)}

∅: empty set

let S be a set, and a be an element

a ∈ S : a is an element of set Sa /∈ S : a is not an element of set S

|S |: number of elements (cardinality)

Set Representation

explicit representationelements are listed within braces: {a1, a2, . . . , an}

implicit representationelements that validate a predicate: {x |x ∈ G , p(x)}

∅: empty set

let S be a set, and a be an element

a ∈ S : a is an element of set Sa /∈ S : a is not an element of set S

|S |: number of elements (cardinality)

Explicit Representation Example

Example

{3, 8, 2, 11, 5}11 ∈ {3, 8, 2, 11, 5}|{3, 8, 2, 11, 5}| = 5

Implicit Representation Examples

Example

{x |x ∈ Z+, 20 < x3 < 100} ≡ {3, 4}{2x − 1|x ∈ Z+, 20 < x3 < 100} ≡ {5, 7}

Example

A = {x |x ∈ R, 1 ≤ x ≤ 5}

Example

E = {n|n ∈ N,∃k ∈ N [n = 2k]}A = {x |x ∈ E , 1 ≤ x ≤ 5}

Implicit Representation Examples

Example

{x |x ∈ Z+, 20 < x3 < 100} ≡ {3, 4}{2x − 1|x ∈ Z+, 20 < x3 < 100} ≡ {5, 7}

Example

A = {x |x ∈ R, 1 ≤ x ≤ 5}

Example

E = {n|n ∈ N,∃k ∈ N [n = 2k]}A = {x |x ∈ E , 1 ≤ x ≤ 5}

Implicit Representation Examples

Example

{x |x ∈ Z+, 20 < x3 < 100} ≡ {3, 4}{2x − 1|x ∈ Z+, 20 < x3 < 100} ≡ {5, 7}

Example

A = {x |x ∈ R, 1 ≤ x ≤ 5}

Example

E = {n|n ∈ N,∃k ∈ N [n = 2k]}A = {x |x ∈ E , 1 ≤ x ≤ 5}

Set Dilemma

There is a barber who lives in a small town.He shaves all those men who don’t shave themselves.He doesn’t shave those men who shave themselves.

Does the barber shave himself?

yes → but he doesn’t shave men who shave themselves→ no

no → but he shaves all men who don’t shave themselves→ yes

Set Dilemma

There is a barber who lives in a small town.He shaves all those men who don’t shave themselves.He doesn’t shave those men who shave themselves.

Does the barber shave himself?

yes → but he doesn’t shave men who shave themselves→ no

no → but he shaves all men who don’t shave themselves→ yes

Set Dilemma

There is a barber who lives in a small town.He shaves all those men who don’t shave themselves.He doesn’t shave those men who shave themselves.

Does the barber shave himself?

yes → but he doesn’t shave men who shave themselves→ no

no → but he shaves all men who don’t shave themselves→ yes

Set Dilemma

let S be the set of sets that are not an element of themselvesS = {A|A /∈ A}

Is S an element of itself?

yes → but the predicate is not valid → no

no → but the predicate is valid → yes

Set Dilemma

let S be the set of sets that are not an element of themselvesS = {A|A /∈ A}

Is S an element of itself?

yes → but the predicate is not valid → no

no → but the predicate is valid → yes

Set Dilemma

let S be the set of sets that are not an element of themselvesS = {A|A /∈ A}

Is S an element of itself?

yes → but the predicate is not valid → no

no → but the predicate is valid → yes

Set Dilemma

let S be the set of sets that are not an element of themselvesS = {A|A /∈ A}

Is S an element of itself?

yes → but the predicate is not valid → no

no → but the predicate is valid → yes

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Subset

Definition

A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B]

set equality:A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

proper subset:A ⊂ B ⇔ (A ⊆ B) ∧ (A 6= B)

∀S [∅ ⊆ S ]

Subset

Definition

A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B]

set equality:A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

proper subset:A ⊂ B ⇔ (A ⊆ B) ∧ (A 6= B)

∀S [∅ ⊆ S ]

Subset

Definition

A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B]

set equality:A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

proper subset:A ⊂ B ⇔ (A ⊆ B) ∧ (A 6= B)

∀S [∅ ⊆ S ]

Subset

Definition

A ⊆ B ⇔ ∀x [x ∈ A → x ∈ B]

set equality:A = B ⇔ (A ⊆ B) ∧ (B ⊆ A)

proper subset:A ⊂ B ⇔ (A ⊆ B) ∧ (A 6= B)

∀S [∅ ⊆ S ]

Subset

not a subset

A * B ⇔ ¬∀x [x ∈ A → x ∈ B]

⇔ ∃x ¬[x ∈ A → x ∈ B]

⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ (x /∈ B)]

Subset

not a subset

A * B ⇔ ¬∀x [x ∈ A → x ∈ B]

⇔ ∃x ¬[x ∈ A → x ∈ B]

⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ (x /∈ B)]

Subset

not a subset

A * B ⇔ ¬∀x [x ∈ A → x ∈ B]

⇔ ∃x ¬[x ∈ A → x ∈ B]

⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ (x /∈ B)]

Subset

not a subset

A * B ⇔ ¬∀x [x ∈ A → x ∈ B]

⇔ ∃x ¬[x ∈ A → x ∈ B]

⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ (x /∈ B)]

Subset

not a subset

A * B ⇔ ¬∀x [x ∈ A → x ∈ B]

⇔ ∃x ¬[x ∈ A → x ∈ B]

⇔ ∃x ¬[¬(x ∈ A) ∨ (x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ ¬(x ∈ B)]

⇔ ∃x [(x ∈ A) ∧ (x /∈ B)]

Power Set

Definition

power set: P(S)the set of all subsets of a set, including the empty setand the set itself

if a set has n elements, its power set has 2n elements

Power Set

Definition

power set: P(S)the set of all subsets of a set, including the empty setand the set itself

if a set has n elements, its power set has 2n elements

Example of Power Set

Example

P({1, 2, 3}) = {∅,{1}, {2}, {3},{1, 2}, {1, 3}, {2, 3},{1, 2, 3}

}

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Set Operations

complement

A = {x |x /∈ A}

intersection

A ∩ B = {x |(x ∈ A) ∧ (x ∈ B)}

if A ∩ B = ∅ then A and B are disjoint

union

A ∪ B = {x |(x ∈ A) ∨ (x ∈ B)}

Set Operations

complement

A = {x |x /∈ A}

intersection

A ∩ B = {x |(x ∈ A) ∧ (x ∈ B)}

if A ∩ B = ∅ then A and B are disjoint

union

A ∪ B = {x |(x ∈ A) ∨ (x ∈ B)}

Set Operations

complement

A = {x |x /∈ A}

intersection

A ∩ B = {x |(x ∈ A) ∧ (x ∈ B)}

if A ∩ B = ∅ then A and B are disjoint

union

A ∪ B = {x |(x ∈ A) ∨ (x ∈ B)}

Set Operations

difference

A− B = {x |(x ∈ A) ∧ (x /∈ B)}

A− B = A ∩ B

symmetric difference:A4 B = {x |(x ∈ A ∪ B) ∧ (x /∈ A ∩ B)}

Set Operations

difference

A− B = {x |(x ∈ A) ∧ (x /∈ B)}

A− B = A ∩ B

symmetric difference:A4 B = {x |(x ∈ A ∪ B) ∧ (x /∈ A ∩ B)}

Set Operations

difference

A− B = {x |(x ∈ A) ∧ (x /∈ B)}

A− B = A ∩ B

symmetric difference:A4 B = {x |(x ∈ A ∪ B) ∧ (x /∈ A ∩ B)}

Cartesian Product

Definition

Cartesian product:A× B = {(a, b)|a ∈ A, b ∈ B}

A× B × C × · · · × N = {(a, b, . . . , n)|a ∈ A, b ∈ B, . . . , n ∈ N}

|A× B × C × · · · × N| = |A| · |B| · |C | · · · |N|

Cartesian Product

Definition

Cartesian product:A× B = {(a, b)|a ∈ A, b ∈ B}

A× B × C × · · · × N = {(a, b, . . . , n)|a ∈ A, b ∈ B, . . . , n ∈ N}

|A× B × C × · · · × N| = |A| · |B| · |C | · · · |N|

Cartesian Product Example

Example

A = {a1.a2, a3, a4}B = {b1, b2, b3}

A× B = {(a1, b1), (a1, b2), (a1, b3),

(a2, b1), (a2, b2), (a2, b3),

(a3, b1), (a3, b2), (a3, b3),

(a4, b1), (a4, b2), (a4, b3)

}

Equivalences

Double Complement

A = A

CommutativityA ∩ B = B ∩ A A ∪ B = B ∪ A

Associativity(A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C )

IdempotenceA ∩ A = A A ∪ A = A

InverseA ∩ A = ∅ A ∪ A = U

Equivalences

Double Complement

A = A

CommutativityA ∩ B = B ∩ A A ∪ B = B ∪ A

Associativity(A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C )

IdempotenceA ∩ A = A A ∪ A = A

InverseA ∩ A = ∅ A ∪ A = U

Equivalences

Double Complement

A = A

CommutativityA ∩ B = B ∩ A A ∪ B = B ∪ A

Associativity(A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C )

IdempotenceA ∩ A = A A ∪ A = A

InverseA ∩ A = ∅ A ∪ A = U

Equivalences

Double Complement

A = A

CommutativityA ∩ B = B ∩ A A ∪ B = B ∪ A

Associativity(A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C )

IdempotenceA ∩ A = A A ∪ A = A

InverseA ∩ A = ∅ A ∪ A = U

Equivalences

Double Complement

A = A

CommutativityA ∩ B = B ∩ A A ∪ B = B ∪ A

Associativity(A ∩ B) ∩ C = A ∩ (B ∩ C ) (A ∪ B) ∪ C = A ∪ (B ∪ C )

IdempotenceA ∩ A = A A ∪ A = A

InverseA ∩ A = ∅ A ∪ A = U

Equivalences

IdentityA ∩ U = A A ∪ ∅ = A

DominationA ∩ ∅ = ∅ A ∪ U = U

DistributivityA ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

AbsorptionA ∩ (A ∪ B) = A A ∪ (A ∩ B) = A

DeMorgan’s LawsA ∩ B = A ∪ B A ∪ B = A ∩ B

Equivalences

IdentityA ∩ U = A A ∪ ∅ = A

DominationA ∩ ∅ = ∅ A ∪ U = U

DistributivityA ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

AbsorptionA ∩ (A ∪ B) = A A ∪ (A ∩ B) = A

DeMorgan’s LawsA ∩ B = A ∪ B A ∪ B = A ∩ B

Equivalences

IdentityA ∩ U = A A ∪ ∅ = A

DominationA ∩ ∅ = ∅ A ∪ U = U

DistributivityA ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

AbsorptionA ∩ (A ∪ B) = A A ∪ (A ∩ B) = A

DeMorgan’s LawsA ∩ B = A ∪ B A ∪ B = A ∩ B

Equivalences

IdentityA ∩ U = A A ∪ ∅ = A

DominationA ∩ ∅ = ∅ A ∪ U = U

DistributivityA ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

AbsorptionA ∩ (A ∪ B) = A A ∪ (A ∩ B) = A

DeMorgan’s LawsA ∩ B = A ∪ B A ∪ B = A ∩ B

Equivalences

IdentityA ∩ U = A A ∪ ∅ = A

DominationA ∩ ∅ = ∅ A ∪ U = U

DistributivityA ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ) A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

AbsorptionA ∩ (A ∪ B) = A A ∪ (A ∩ B) = A

DeMorgan’s LawsA ∩ B = A ∪ B A ∪ B = A ∩ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

DeMorgan’s Laws

Proof.

A ∩ B = {x |x /∈ (A ∩ B)}= {x |¬(x ∈ (A ∩ B))}= {x |¬((x ∈ A) ∧ (x ∈ B))}= {x |¬(x ∈ A) ∨ ¬(x ∈ B)}= {x |(x /∈ A) ∨ (x /∈ B)}= {x |(x ∈ A) ∨ (x ∈ B)}= {x |x ∈ A ∪ B}= A ∪ B

Example of Equivalence

Theorem

A ∩ (B − C ) = (A ∩ B)− (A ∩ C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Equivalence Example

Proof.

(A ∩ B)− (A ∩ C ) = (A ∩ B) ∩ (A ∩ C )

= (A ∩ B) ∩ (A ∪ C )

= ((A ∩ B) ∩ A) ∪ ((A ∩ B) ∩ C ))

= ∅ ∪ ((A ∩ B) ∩ C ))

= (A ∩ B) ∩ C

= A ∩ (B ∩ C )

= A ∩ (B − C )

Topics

1 PredicatesIntroductionQuantifiersMultiple Quantifiers

2 SetsIntroductionSubsetSet OperationsInclusion-Exclusion

Principle of Inclusion-Exclusion

|A ∪ B| = |A|+ |B| − |A ∩ B||A ∪ B ∪ C | =|A|+ |B|+ |C | − (|A ∩ B|+ |A ∩ C |+ |B ∩ C |) + |A ∩ B ∩ C |

Theorem

|A1 ∪ A2 ∪ · · · ∪ An| =∑

i

|Ai | −∑i ,j

|Ai ∩ Aj |

+∑i ,j ,k

|Ai ∩ Aj ∩ Ak |

· · ·+−1n−1|Ai ∩ Aj ∩ · · · ∩ An|

Principle of Inclusion-Exclusion

|A ∪ B| = |A|+ |B| − |A ∩ B||A ∪ B ∪ C | =|A|+ |B|+ |C | − (|A ∩ B|+ |A ∩ C |+ |B ∩ C |) + |A ∩ B ∩ C |

Theorem

|A1 ∪ A2 ∪ · · · ∪ An| =∑

i

|Ai | −∑i ,j

|Ai ∩ Aj |

+∑i ,j ,k

|Ai ∩ Aj ∩ Ak |

· · ·+−1n−1|Ai ∩ Aj ∩ · · · ∩ An|

Principle of Inclusion-Exclusion

|A ∪ B| = |A|+ |B| − |A ∩ B||A ∪ B ∪ C | =|A|+ |B|+ |C | − (|A ∩ B|+ |A ∩ C |+ |B ∩ C |) + |A ∩ B ∩ C |

Theorem

|A1 ∪ A2 ∪ · · · ∪ An| =∑

i

|Ai | −∑i ,j

|Ai ∩ Aj |

+∑i ,j ,k

|Ai ∩ Aj ∩ Ak |

· · ·+−1n−1|Ai ∩ Aj ∩ · · · ∩ An|

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

a method to identify prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30

2 3 5 7 9 11 13 15 1719 21 23 25 27 29

2 3 5 7 11 13 1719 23 25 29

2 3 5 7 11 13 1719 23 29

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

a method to identify prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30

2 3 5 7 9 11 13 15 1719 21 23 25 27 29

2 3 5 7 11 13 1719 23 25 29

2 3 5 7 11 13 1719 23 29

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

a method to identify prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30

2 3 5 7 9 11 13 15 1719 21 23 25 27 29

2 3 5 7 11 13 1719 23 25 29

2 3 5 7 11 13 1719 23 29

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

a method to identify prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30

2 3 5 7 9 11 13 15 1719 21 23 25 27 29

2 3 5 7 11 13 1719 23 25 29

2 3 5 7 11 13 1719 23 29

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

a method to identify prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 24 25 26 27 28 29 30

2 3 5 7 9 11 13 15 1719 21 23 25 27 29

2 3 5 7 11 13 1719 23 25 29

2 3 5 7 11 13 1719 23 29

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

number of primes between 1 and 100

numbers that are not divisible by 2, 3, 5 and 7

A2: set of numbers divisible by 2A3: set of numbers divisible by 3A5: set of numbers divisible by 5A7: set of numbers divisible by 7

|A2 ∪ A3 ∪ A5 ∪ A7|

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

number of primes between 1 and 100

numbers that are not divisible by 2, 3, 5 and 7

A2: set of numbers divisible by 2A3: set of numbers divisible by 3A5: set of numbers divisible by 5A7: set of numbers divisible by 7

|A2 ∪ A3 ∪ A5 ∪ A7|

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

number of primes between 1 and 100

numbers that are not divisible by 2, 3, 5 and 7

A2: set of numbers divisible by 2A3: set of numbers divisible by 3A5: set of numbers divisible by 5A7: set of numbers divisible by 7

|A2 ∪ A3 ∪ A5 ∪ A7|

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

|A2| = b100/2c = 50

|A3| = b100/3c = 33

|A5| = b100/5c = 20

|A7| = b100/7c = 14

|A2 ∩ A3| = b100/6c = 16

|A2 ∩ A5| = b100/10c = 10

|A2 ∩ A7| = b100/14c = 7

|A3 ∩ A5| = b100/15c = 6

|A3 ∩ A7| = b100/21c = 4

|A5 ∩ A7| = b100/35c = 2

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

|A2| = b100/2c = 50

|A3| = b100/3c = 33

|A5| = b100/5c = 20

|A7| = b100/7c = 14

|A2 ∩ A3| = b100/6c = 16

|A2 ∩ A5| = b100/10c = 10

|A2 ∩ A7| = b100/14c = 7

|A3 ∩ A5| = b100/15c = 6

|A3 ∩ A7| = b100/21c = 4

|A5 ∩ A7| = b100/35c = 2

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

|A2 ∩ A3 ∩ A5| = b100/30c = 3

|A2 ∩ A3 ∩ A7| = b100/42c = 2

|A2 ∩ A5 ∩ A7| = b100/70c = 1

|A3 ∩ A5 ∩ A7| = b100/105c = 0

|A2 ∩ A3 ∩ A5 ∩ A7| = b100/210c = 0

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

|A2 ∩ A3 ∩ A5| = b100/30c = 3

|A2 ∩ A3 ∩ A7| = b100/42c = 2

|A2 ∩ A5 ∩ A7| = b100/70c = 1

|A3 ∩ A5 ∩ A7| = b100/105c = 0

|A2 ∩ A3 ∩ A5 ∩ A7| = b100/210c = 0

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

|A2 ∪ A3 ∪ A5 ∪ A7| = (50 + 33 + 20 + 14)

− (16 + 10 + 7 + 6 + 4 + 2)

+ (3 + 2 + 1 + 0)

− (0)

= 78

number of primes: (100− 78) + 4− 1 = 25

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

|A2 ∪ A3 ∪ A5 ∪ A7| = (50 + 33 + 20 + 14)

− (16 + 10 + 7 + 6 + 4 + 2)

+ (3 + 2 + 1 + 0)

− (0)

= 78

number of primes: (100− 78) + 4− 1 = 25

References

Required Reading: Grimaldi

Chapter 3: Set Theory

3.1. Sets and Subsets3.2. Set Operations and the Laws of Set Theory

Chapter 8: The Principle of Inclusion and Exclusion

8.1. The Principle of Inclusion and Exclusion

Supplementary Reading: O’Donnell, Hall, Page

Chapter 8: Set Theory