Developing a General Understanding of the Decomposition ... Developing a... · Developing a General...

Post on 21-Feb-2020

6 views 0 download

Transcript of Developing a General Understanding of the Decomposition ... Developing a... · Developing a General...

Developing a General Understanding of the

Decomposition Process: Results of a Network Experiment

Mark E. HarmonRichardson Chair and ProfessorDepartment of Forest Science

Oregon State University

Thanks to!

• Becky Fasth, Jay Sexton, and many, many others throughout the LTER network for their help in

installing and maintaining the experiments

• The NCEAS Decomposition Working Group

• NSF-LTER, LTRB, Ecosystems, NCEAS for funding

Decomposition is an important process to understand

• Controls accumulation of organic matter• Carbon dynamics of ecosystems

– Present and future• Nutrient release for plants• Decomposed material influences soil

properties• Ecosystem indicator of pollution

Compared to production we know little about decomposition

• Relatively few studies on decomposition• Few global views of process-studies

generally local• Few global models of process• Few databases to drive global

calculations• Uncertainty about long-term dynamics

LIDET: Long-term IntersiteDecomposition Experiment Team

To what degree does climate versus substrate quality control:

The rate of decomposition? Hypothesis: they interact

The formation of stable organic material? Hypothesis: no effect of either, a constant 15%

Lignin (%)

k

AET = 797 mm

AET = 343 mm

Climate-Substrate Quality Interaction-Meentemeyer (1978)

Background

• 1988 Wood’s Hole workshop at Marine Biological Laboratory– LIDET; DIRT experiments designed

• 1989 Litter collected, bags filled• 1990-91 Litter placed in field• 2002 field work completed• 2003-2006 NCEAS working group

Location of LIDET sites

Existing North American Networks

• LIDET: Long-term IntersiteDecomposition Experiment Team

• CIDET: Canadian IntersiteDecomposition Experiment

-10

-5

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

Annual Precipitation (mm)

Annu

al T

empe

ratu

re (C

)

LIDETsites

Climatic Fields-LIDET

-15

-10

-5

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

Annual Precipitation (mm)

Annu

al T

empe

ratu

re (C

)

LIDET

CIDET

Climatic Fields-LIDET & CIDET

0

0.5

1

1.5

2

2.5

0 10 20 30 40

Lignin (%)

Nitr

ogen

(%)

CIDET

LIDET

Substrate Quality: Lignin v. Nitrogen

Steps Involved• Collection of litter as selected sites• Preparation of litterbags; data set built• Sent to 28 sites• Site periodically send data and litter back• Initial Quality control checks, data entry,

preliminary analysis• Lab analysis

Litter bags20X20 cmOn surface

Root bags20X20 cmBuried ~10 cm

Models ExaminedMt=M0 exp[-kt]

Single exponential

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10Time (years)

Mas

s re

mai

ning

Single exponential

0.001

0.01

0.1

10 2 4 6 8 10

Time (years)M

ass

rem

aini

ng

Models ExaminedMt=Mf0 exp[-kft]+Ms0 exp[-kst]

Dual Exponential

00.10.20.30.40.50.60.70.80.9

1

0 2 4 6 8 10Time (years)

Mas

s re

mai

ning

Dual Exponential

0.01

0.1

10 2 4 6 8 10

Time (years)

Mas

s re

mai

ning

Models ExaminedMt=Mf0 exp[-kft]+Mstable

Asymptotic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10Time (years)

Mas

s re

mai

ning

Asymptotic

0.1

10 2 4 6 8 10

Time (years)

Mas

s re

mai

ning

Acsa

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%)

observedsingle expdual exp

Drgl

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%)

observedsingle expdual exp

Pire

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%)

observedsingle expdual exp

Qupr

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%) observed

single expdual exp

Ange-roots

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%)

observedsingle expdual exp

Drgl roots

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%)

observedsingle expdual exp

Piel roots

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00

Time (years)

Mas

s re

mai

ning

(%)

observedsingle expdual exp

Single exponential-Pine leaves

Pire L

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Observed (PMR)

Mod

el 1

Pre

dict

ed (P

MR

)

Single exponential-Drypetes leaves

Drgl L

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Observed (PMR)

Mod

el 1

pre

dict

ed (P

RM

)

Double exponential-pine leaves

Pire L

0102030405060708090

100

0 20 40 60 80 100

Observed (PMR)

Mod

el 5

pre

dict

ed (P

MR

)

Double exponential-Drypetes leaves

Drgl L

0102030405060708090

100

0 20 40 60 80 100

Observed (PMR)

Mod

el 5

pre

dict

ed (P

MR

)

Asymptotic-pine leavesPire L

0

20

40

60

80

100

120

0 20 40 60 80 100

Observed (PMR)

Mod

el 3

Pre

dict

ed (P

MR

)

Asymptotic-Drypetes leaves

Drgl L

0

20

40

60

80

100

120

0 20 40 60 80 100

Observed (PMR)

Mod

el 3

pre

dict

ed (P

MR

)

Which model is best?

0 20 40 60 80 100

Single exponential

Doubleexponential

Asymptotic

Mod

el

Matches (%)

Dual Exponential v AsymptoticAll sites and species

-20

0

20

40

60

80

100

0 20 40 60 80 100

Model 4 prediction (PMR)

Mod

el 5

pre

dict

ion

(PM

R)

Decomposition Rate-constants of Fast Phase

0

2

4

6

8

10

12

14

16

Andrews Luquillo

Site

Fast

rate

-con

stan

t (pe

r yea

r)

Time

Accumulated carbon in forest floor, Sweden

R2 = 0.993p<0.01

2984 yrs2081 yrs120 yrs 1106 yrs

7.8 tons

72 tons

173 tons

245 tons

After Wardle et al

Decomposition rate-constant of slow fraction

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Andrews LuquilloSite

Rat

e-co

nsta

nt (p

er y

ear) Drypetes

Pinus

What is the Decomposition Rate?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10Time (years)

K pe

r yea

r

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

Time (years)

Sto

re

year 1

year 2

year 3

year 4

year 10

year 5

year 6

year 7year 8

year 9

Total litter

Overall Decomposition rate-constant: method

Year whatever

K=Input/Store

Example of calculation of integrated k

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31Time (years)

Mas

s re

mai

ning

(%)

species 1species 2

Species 1 2Store 624 617Input 100 100K 0.160 0.162

Integrated v. 1st year k

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

0.000 1.000 2.000 3.000 4.000 5.000

First-year k (per year)

Inte

grat

ed k

(per

yea

r)

observations1:1 lineregression

Y=0.75 XR2=0.59

Integrated v. 1st year k

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.000 1.000 2.000 3.000 4.000 5.000 6.000

1st year k (per year)

Inte

grat

ed: 1

st y

ear k

ratio

82% cases1st year k>integrated k

After Parton et al 2007

Open Sites

After Parton et al 2007

Short-termrelationships1st yeardecompositionrate-constants and Climate

ANGE roots, lignin = 10.5

kS

0.5

1.0

1.5

2.0

2.5

DRGL foliage, lignin = 10.9

ACSA foliage, lignin = 15.9

kS

0.5

1.0

1.5

2.0

2.5

DRGL roots, lignin = 16.1

TRAE foliage, lignin = 16.2

kS

0.5

1.0

1.5

2.0

2.5

PIRE foliage, lignin = 19.2

PIEL foliage, lignin = 21.4

kS

0.5

1.0

1.5

2.0

2.5

QUPR foliage, lignin = 23.5

THPL foliage, lignin = 26.7

0.0 0.2 0.4 0.6 0.8 1.0

kS

0.5

1.0

1.5

2.0

2.5

PIEL roots, lignin = 34.9

0.2 0.4 0.6 0.8 1.0Climatic Decomposition Index (CDI)

Currie et al in prep

Long-termrelationships10 year averagedecompositionrate-constants and Climate

ANGE roots, lignin = 10.5

kI

0.25

0.50

0.75

1.00

DRGL foliage, lignin = 10.9

ACSA foliage, lignin = 15.9

kI

0.25

0.50

0.75

1.00

DRGL roots, lignin = 16.1

TRAE foliage, lignin = 16.2

kI

0.25

0.50

0.75

1.00

PIRE foliage, lignin = 19.2

PIEL foliage, lignin = 21.4

kI

0.25

0.50

0.75

1.00

QUPR foliage, lignin = 23.5

THPL foliage, lignin = 26.7

0.0 0.2 0.4 0.6 0.8 1.0

kI

0.25

0.50

0.75

1.00

PIEL roots, lignin = 34.9

0.2 0.4 0.6 0.8 1.0Climatic Decomposition Index (CDI)

Currie et al in prep

Regression RelationshipsDependent

variable

Climate alone Litter quality alone AET and lignin only

Best independent variable r2 p Best independent

variables‡ r2 p r2 p

kS CDI 0.46 < 0.001 lignin:N 0.14 < 0.001 0.48 < 0.001

kH CDI 0.45 0.048 lignin:N, ascarb, ws 0.11 0.001 0.41 0.001

kD CDI 0.30 0.034 lignin:N, ascarb 0.09 0.014 0.28 < 0.001

MD CDI 0.11 < 0.001 tnn, acid 0.10 < 0.001 0.16 < 0.001

kI AET 0.07 < 0.001 tex, ascarb 0.06 < 0.001 0.13 < 0.001

Climatic Effects: Dowel Results

Single exponential model

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0.000 0.100 0.200 0.300 0.400 0.500 0.600

Aboveground k1 (per year)

Belo

wgr

ound

k1

(per

yea

r) observed1:1 line

Above- v Belowground

CDI v Single exponential (k1)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0 0.2 0.4 0.6 0.8 1CDI (dimensionless)

k1 (p

er y

ear)

Below meshAboveBelow exposed

Climate Decomposition Index

Arid/AnnualGrassland

0102030405060708090100Biomass Remaining (%)

0.0

0.5

1.0

1.5

Initi

al N

Rem

aini

ng (%

)

TropicalForest

Humid Grassland

DeciduousForest

ConiferForest

Tundra

Drypetes glauca

Andropogon gerardi and, Pinus elliottii

020406080100Biomass Remaining (%)

0.0

0.5

1.0

1.5

Initi

al N

Rem

aini

ng (%

)Long-term Nitrogen Dynamics-fine roots-Parton et al 2007

01020304050607080901000.00.51.01.52.02.5

Initi

al N

Rem

aini

ng (%

)

01020304050607080901000.00.51.01.52.02.5

01020304050607080901000.00.51.01.52.02.5

0102030405060708090100Biomass Remaining (%)

0.00.51.01.52.02.5

1.97 % N

1.02 % N

0.58-0.81 % N

0.38 % N

TropicalForest

Annual Grassland

Humid Grassland

DeciduousForest

ConiferForest

Tundra

Long-term Nitrogen Dynamics-Initial Nitrogen Content-Parton et al 2007

0102030405060708090100Biomass Remaining (%)

0.00.51.01.52.02.5

01020304050607080901000.00.51.01.52.02.5

01020304050607080901000.00.51.01.52.02.5

01020304050607080901000.00.51.01.52.02.5

AridGrassland

Humid Grassland

Initi

al N

Rem

aini

ng (%

)1.98 % N

1.02 % N

0.58-0.80 % N

0.38 % N

Figure 4 e-h

Website slide

Future Experiments

Fill out range of environments: Tropical-subtropical; hydric

Better Understanding of MicroclimateInfluence of organisms

Decomposition rate of the slow phase materialDoes mass of slow phase depend on formation

rate or decomposition rate?