csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 ·...

Post on 28-May-2020

1 views 0 download

Transcript of csrri.iit.educsrri.iit.edu › ~segre › phys406 › 18S › lecture_08.pdf · 2018-02-02 ·...

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Today’s Outline - February 01, 2018

• Problems from Chapter 6

• Problems from Chapter 7

Homework Assignment #04:Chapter 7:1,2,4,5,7,9due Thursday, February 08, 2018

Homework Assignment #05:Chapter 7:11,13,14,15,16,19due Thursday, February 15, 2018

Midterm Exam #1Thursday, February 22, 2018

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 1 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22

= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23

Consider the (eight) n = 2 states, |2 l ml ms〉. Find the energy of eachstate, under strong Zeeman splitting. Express each answer as the sum ofthree terms: the Bohr energy, the fine structure (proportional to α2), andthe Zeeman contribution (proportional to µBBext). If you ignore finestructure altogether, how many distinct levels are there and what are theirdegeneracies?

The Bohr term is identicalfor all of these states

the strong Zeeman termis

and the fine structure per-turbation for l > 0 is

E2 = −13.6 eV

22= −3.4 eV

EZ = µBBext(ml + 2ms)

Efs = (1.7 eV)α2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 2 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.23 (cont.)

Etot = −3.4 eV + (3.4 eV)α2

2

{3

8−[l(l + 1)−mlms

l(l + 1/2)(l + 1)

]}+ µBBext(ml + 2ms)

|n l ml ms〉 (ml + 2ms) {. . . } Total Energy

|1〉 = |2 0 0 12〉 1 −58 −3.4 eV[1 + 5

16α2] + µBBext

|2〉 = |2 0 0 −12〉 −1 −58 −3.4 eV[1 + 516α

2]− µBBext

|3〉 = |2 1 1 12〉 2 −18 −3.4 eV[1 + 1

16α2] + 2µBBext

|4〉 = |2 1 −1 −12〉 −2 −18 −3.4 eV[1 + 116α

2]− 2µBBext

|5〉 = |2 1 0 12〉 1 − 7

24 −3.4 eV[1 + 748α

2] + µBBext

|6〉 = |2 1 1 −12〉 0 −1124 −3.4 eV[1 + 1148α

2]

|7〉 = |2 1 0 −12〉 −1 − 724 −3.4 eV[1 + 7

48α2]− µBBext

|8〉 = |2 1 −1 12〉 0 −1124 −3.4 eV[1 + 11

48α2]

ignoring fine structure there are 5 distinct levels with two of them singlydegenerate and the other double degenerate

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 3 / 18

Problem 6.25

Work out the matrix elements of H ′Z and H ′fs and construct the W-matrixgiven in the text, for n = 2.

The derivation in the book used the 8 distinct j , and mj eigenstates as thebasis upon which to build the interaction matrix

l = 0

{

ψ1 ≡∣∣1212

⟩= |00〉

∣∣1212

⟩ψ2 ≡

∣∣12 −

12

⟩= |00〉

∣∣12 −

12

l = 1

ψ3 ≡∣∣3232

⟩= |11〉

∣∣1212

⟩ψ4 ≡

∣∣32 −

32

⟩= |1−1〉

∣∣12 −

12

⟩ψ5 ≡

∣∣3212

⟩=√

23 |10〉

∣∣1212

⟩+√

13 |11〉

∣∣12 −

12

⟩ψ6 ≡

∣∣1212

⟩= −

√13 |10〉

∣∣1212

⟩+√

23 |11〉

∣∣12 −

12

⟩ψ7 ≡

∣∣32 −

12

⟩=√

13 |1−1〉

∣∣1212

⟩+√

23 |10〉

∣∣12 −

12

⟩ψ8 ≡

∣∣12 −

12

⟩= −

√23 |1−1〉

∣∣1212

⟩+√

13 |10〉

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 4 / 18

Problem 6.25

Work out the matrix elements of H ′Z and H ′fs and construct the W-matrixgiven in the text, for n = 2.

The derivation in the book used the 8 distinct j , and mj eigenstates as thebasis upon which to build the interaction matrix

l = 0

{

ψ1 ≡∣∣1212

⟩= |00〉

∣∣1212

⟩ψ2 ≡

∣∣12 −

12

⟩= |00〉

∣∣12 −

12

l = 1

ψ3 ≡∣∣3232

⟩= |11〉

∣∣1212

⟩ψ4 ≡

∣∣32 −

32

⟩= |1−1〉

∣∣12 −

12

⟩ψ5 ≡

∣∣3212

⟩=√

23 |10〉

∣∣1212

⟩+√

13 |11〉

∣∣12 −

12

⟩ψ6 ≡

∣∣1212

⟩= −

√13 |10〉

∣∣1212

⟩+√

23 |11〉

∣∣12 −

12

⟩ψ7 ≡

∣∣32 −

12

⟩=√

13 |1−1〉

∣∣1212

⟩+√

23 |10〉

∣∣12 −

12

⟩ψ8 ≡

∣∣12 −

12

⟩= −

√23 |1−1〉

∣∣1212

⟩+√

13 |10〉

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 4 / 18

Problem 6.25

Work out the matrix elements of H ′Z and H ′fs and construct the W-matrixgiven in the text, for n = 2.

The derivation in the book used the 8 distinct j , and mj eigenstates as thebasis upon which to build the interaction matrix

l = 0

{ψ1 ≡

∣∣1212

⟩= |00〉

∣∣1212

⟩ψ2 ≡

∣∣12 −

12

⟩= |00〉

∣∣12 −

12

l = 1

ψ3 ≡∣∣3232

⟩= |11〉

∣∣1212

⟩ψ4 ≡

∣∣32 −

32

⟩= |1−1〉

∣∣12 −

12

⟩ψ5 ≡

∣∣3212

⟩=√

23 |10〉

∣∣1212

⟩+√

13 |11〉

∣∣12 −

12

⟩ψ6 ≡

∣∣1212

⟩= −

√13 |10〉

∣∣1212

⟩+√

23 |11〉

∣∣12 −

12

⟩ψ7 ≡

∣∣32 −

12

⟩=√

13 |1−1〉

∣∣1212

⟩+√

23 |10〉

∣∣12 −

12

⟩ψ8 ≡

∣∣12 −

12

⟩= −

√23 |1−1〉

∣∣1212

⟩+√

13 |10〉

∣∣12 −

12

⟩C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 4 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

ψ4 ≡ |1−1〉∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

ψ5 ≡ |10〉∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

ψ6 ≡ |11〉∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

ψ7 ≡ |10〉∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

ψ8 ≡ |1−1〉∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Problem 6.25 (cont.)

We will use the ml , ms choice of basis set wavefunctions instead

The l = 0 states are the same asbefore but now the other 6 stateshave mixed j , and mj represen-tations using the same Clebsch-Gordan table

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

⟩C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 5 / 18

Complete n = 2, l = 0, 1 degenerate set

The complete set of 8 n = 2, l = 0, 1 degenerate states using quantumnumbers l , s, ml , and ms can now be listed

l = 0

{

ψ1 ≡ |00〉∣∣1212

⟩=∣∣1212

⟩ψ2 ≡ |00〉

∣∣12 −

12

⟩=∣∣12 −

12

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

now build the W matrix for the H ′ = HZ + Hfs perturbation

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 6 / 18

Complete n = 2, l = 0, 1 degenerate set

The complete set of 8 n = 2, l = 0, 1 degenerate states using quantumnumbers l , s, ml , and ms can now be listed

l = 0

{ψ1 ≡ |00〉

∣∣1212

⟩=∣∣1212

⟩ψ2 ≡ |00〉

∣∣12 −

12

⟩=∣∣12 −

12

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

now build the W matrix for the H ′ = HZ + Hfs perturbation

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 6 / 18

Complete n = 2, l = 0, 1 degenerate set

The complete set of 8 n = 2, l = 0, 1 degenerate states using quantumnumbers l , s, ml , and ms can now be listed

l = 0

{ψ1 ≡ |00〉

∣∣1212

⟩=∣∣1212

⟩ψ2 ≡ |00〉

∣∣12 −

12

⟩=∣∣12 −

12

l = 1

ψ3 ≡ |11〉∣∣1212

⟩=∣∣3232

⟩ψ4 ≡ |1−1〉

∣∣12 −

12

⟩=∣∣32 −

32

⟩ψ5 ≡ |10〉

∣∣1212

⟩=√

23

∣∣3212

⟩−√

13

∣∣1212

⟩ψ6 ≡ |11〉

∣∣12 −

12

⟩=√

13

∣∣3212

⟩+√

23

∣∣1212

⟩ψ7 ≡ |10〉

∣∣12 −

12

⟩=√

23

∣∣32 −

12

⟩+√

13

∣∣12 −

12

⟩ψ8 ≡ |1−1〉

∣∣1212

⟩=√

13

∣∣32 −

12

⟩−√

23

∣∣12 −

12

⟩now build the W matrix for the H ′ = HZ + Hfs perturbation

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 6 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms)

= β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms)

= β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]

= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms)

= β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]

= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]

= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction

⟨ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β

⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β

= −5γ − β⟨ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β

⟨ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β

⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2β

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

The Zeeman and finestructure correctionsare

taking n = 2 and re-placing the constantswith β and γ for sim-plification

EZ = µBBext(ml + 2ms) = β(ml + 2ms)

Efs = −13.6α2

n4

[n

j + 12

− 3

4

]= −γ

[8

j + 12

− 3

]

now compute the various matrix elements usingthe appropriate basis set for each correction⟨

ψ1|H ′|ψ1

⟩=⟨1212 |Hfs |12

12

⟩+⟨001

212 |HZ |12

1200⟩

= −γ[8− 3] + β

= −5γ + β⟨ψ2|H ′|ψ2

⟩=⟨12 −

12 |Hfs |12 −

12

⟩+⟨001

2 −12 |HZ |12 −

1200⟩

= −γ[8− 3]− β= −5γ − β⟨

ψ3|H ′|ψ3

⟩=⟨3232 |Hfs |32

32

⟩+⟨111

212 |HZ |12

1211⟩

= −γ[4− 3] + 2β

= −γ + 2β⟨ψ4|H ′|ψ4

⟩=⟨32 −

32 |Hfs |32 −

32

⟩+⟨1−11

2 −12 |HZ |12 −

121−1

⟩= −γ[4− 3]− 2β

= −γ − 2βC. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 7 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

= 23

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β

= −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β

⟨ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

= 13

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3]

= −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ

⟨ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

= 23

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β

= −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β

⟨ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

= 13

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3]

= −113 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

⟨ψ5|H ′|ψ5

⟩= 2

3

⟨3212 |Hfs |32

12

⟩+ 1

3

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3] + β = −73γ + β⟨

ψ6|H ′|ψ6

⟩= 1

3

⟨3212 |Hfs |32

12

⟩+ 2

3

⟨1212 |Hfs |12

12

⟩+⟨111

2 −12 |HZ |12 −

1211⟩

= −γ 13 [4− 3]− γ 2

3 [8− 3] = −113 γ⟨

ψ7|H ′|ψ7

⟩= 2

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 1

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12 −

1210⟩

= −γ 23 [4− 3]− γ 1

3 [8− 3]− β = −73γ − β⟨

ψ8|H ′|ψ8

⟩= 1

3

⟨32 −

12 |Hfs |32 −

12

⟩+ 2

3

⟨12 −

12 |Hfs |12 −

12

⟩+⟨1−11

212 |HZ |12

121−1

⟩= −γ 1

3 [4− 3]− γ 23 [8− 3] = −11

3 γ

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 8 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]

because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉

⟨ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3]

= 4√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ

=⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3]

= 4√2

3 γ =⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ

=⟨ψ8|H ′|ψ7

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

Matrix element calculations

EZ = β(ml + 2ms) Efs = −γ

[8

j + 12

− 3

]because of orthonormality of the basis sets, the only cross terms which arenon-zero are the ones where the same two original 〈jmj | terms arecombined: 〈ψ5|H ′|ψ6〉 and 〈ψ7|H ′|ψ8〉⟨

ψ5|H ′|ψ6

⟩=√

23

√13

⟨3212 |Hfs |32

12

⟩−√

13

√23

⟨1212 |Hfs |12

12

⟩+⟨101

212 |HZ |12 −

1211⟩

= −γ√

29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ6|H ′|ψ5

⟩⟨ψ7|H ′|ψ8

⟩=√

23

√13

⟨32 −

12 |Hfs |32 −

12

⟩−√

13

√23

⟨12 −

12 |Hfs |12 −

12

⟩+⟨101

2 −12 |HZ |12

121−1

⟩= −γ

√29 [4− 3] + γ

√29 [8− 3] = 4

√2

3 γ =⟨ψ8|H ′|ψ7

⟩C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 9 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ

113 γ

0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ

113 γ

0 0

0 0 0 0 0 0

73γ+β

−4√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β

−4√2

3 γ 0 0

0 0 0 0 −4√2

3 γ

113 γ

0 0

0 0 0 0 0 0

73γ+β

−4√2

3 γ

0 0 0 0 0 0 −4√2

3 γ

113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β − 4

√2

3 γ

0 0

0 0 0 0

− 4√2

3 γ 113 γ

0 0

0 0 0 0 0 0

73γ+β

−4√2

3 γ

0 0 0 0 0 0 −4√2

3 γ

113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β

0 0 0 0 0 0 00

5γ+β

0 0 0 0 0 00 0

γ−2β

0 0 0 0 00 0 0

γ+2β

0 0 0 0

0 0 0 0

73γ−β − 4

√2

3 γ

0 0

0 0 0 0

− 4√2

3 γ 113 γ

0 0

0 0 0 0 0 0

73γ+β − 4

√2

3 γ

0 0 0 0 0 0

− 4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β − 4

√2

3 γ 0 0

0 0 0 0 − 4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β − 4

√2

3 γ

0 0 0 0 0 0 − 4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β − 4

√2

3 γ 0 0

0 0 0 0 − 4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β − 4

√2

3 γ

0 0 0 0 0 0 − 4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation.

The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

The W-matrix

Defining the fine structure and Zeeman terms with

γ ≡ (α/8)2 13.6 eV, β ≡ µBBext

W =−

5γ−β 0 0 0 0 0 0 00 5γ+β 0 0 0 0 0 00 0 γ−2β 0 0 0 0 00 0 0 γ+2β 0 0 0 0

0 0 0 0 73γ−β −4

√2

3 γ 0 0

0 0 0 0 −4√2

3 γ 113 γ 0 0

0 0 0 0 0 0 73γ+β −4

√2

3 γ

0 0 0 0 0 0 −4√2

3 γ 113 γ

ψ1, ψ2, ψ3, and ψ4 are clearly already eigenfunctions of the fullperturbation as we saw in the original calculation. The other 4eigenfunctions can be solved by solving two 2× 2 blocks and thennegating the solutions

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 10 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣

0 = (7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)

using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 1 solution

The first block is solved bydiagonalizing the 2 × 2 sub-matrix

0 = det

∣∣∣∣∣ 73γ−β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ−β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 − 11

3βγ − 18

3γλ+ βλ

= λ2 − λ(6γ − β) +

(45

9γ2 − 11

3βγ

)using the quadratic equation and recalling that the solution must benegated

− λ± = 3γ − β

2± 1

2

√36γ2 − 12βγ + β2 − 20γ2 +

44

3βγ

λ±= −3γ +β

2±√

4γ2 +2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 11 / 18

Block 2 solution

The second block is solved inthe same way

0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣

0 = (7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)

using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Block 2 solution

The second block is solved inthe same way 0 = det

∣∣∣∣∣ 73γ+β − λ −4

√2

3 γ

−4√2

3 γ 113 γ− λ

∣∣∣∣∣0 = (

7

3γ+β − λ)(

11

3γ− λ)− 32

9γ2

= λ2 +77

9γ2 − 32

9γ2 +

11

3βγ − 18

3γλ− βλ

= λ2 − λ(6γ + β) +

(45

9γ2 +

11

3βγ

)using the quadratic equation and negating the solution

− λ± = 3γ +β

2± 1

2

√36γ2 + 12βγ + β2 − 20γ2 − 44

3βγ

λ±= −3γ − β

2±√

4γ2 − 2

3γβ +

1

4β2

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 12 / 18

Problem 7.17

Although the Schrodinger equation for helium itself cannot be solvedexactly, there exist “helium-like” systems that do admit exact solutions. Asimple example is “rubber-band helium,” in which the Coulomb forces arereplaced by Hooke’s law forces:

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

(a) Show that by the change of variables below, this Hamiltonian can besolved analytically

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

(b) What is the exact ground state energy for this system?

(c) Solve for an upper bound to the ground state using the variationalprinciple

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 13 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v)

~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2

+ u2 − 2~u · ~v + v2

)

= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)

= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

~u ≡ 1√2

(~r1 +~r2) ~v ≡ 1√2

(~r1 −~r2)

First apply the change of variables to the r21 + r22 term of the potentialenergy

~r1 =1√2

(~u + ~v) ~r2 =1√2

(~u − ~v)

r21 + r22 =1

2

(u2 + 2~u · ~v + v2 + u2 − 2~u · ~v + v2

)= u2 + v2

the same can be done with the derivative terms, ∇21 +∇2

2 by expandingeach coordinate’s derivative in turn

∂x1=

∂ux

∂ux∂x1

+∂

∂vx

∂vx∂x1

=1√2

(∂

∂ux+

∂vx

),∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 14 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)

∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)

=1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)

=1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x

+ 2∂2

∂ux∂vx+

∂2

∂v2x

)

∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx

+∂2

∂v2x

)

∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)

∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)

=1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)

=1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x

− 2∂2

∂ux∂vx+

∂2

∂v2x

)

(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx

+∂2

∂v2x

)

(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)

(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)

−→ ∇21 +∇2

2 = ∇2u +∇2

v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

∂x1=

1√2

(∂

∂ux+

∂vx

)∂

∂x2=

1√2

(∂

∂ux− ∂

∂vx

)∂2

∂x21=

1√2

∂x1

(∂

∂ux+

∂vx

)=

1

2

(∂

∂ux+

∂vx

)(∂

∂ux+

∂vx

)=

1

2

(∂2

∂u2x+ 2

∂2

∂ux∂vx+

∂2

∂v2x

)∂2

∂x22=

1√2

∂x2

(∂

∂ux− ∂

∂vx

)=

1

2

(∂

∂ux− ∂

∂vx

)(∂

∂ux− ∂

∂vx

)=

1

2

(∂2

∂u2x− 2

∂2

∂ux∂vx+

∂2

∂v2x

)(∂2

∂x21+

∂2

∂x22

)=

(∂2

∂u2x+

∂2

∂v2x

)−→ ∇2

1 +∇22 = ∇2

u +∇2v

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 15 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]

+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2 − 1

2λmω2v2

]

this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Putting it all together . . .

H = − ~2

2m

(∇2

1 +∇22

)+

1

2mω2

(r21 + r22

)− λ

4mω2|~r1 −~r2|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω2 1

2|(~u + ~v)− (~u − ~v)|2

= − ~2

2m

(∇2

u +∇2v

)+

1

2mω2

(u2 + v2

)− λ

4mω22v2

=

[− ~2

2m∇2

u +1

2mω2u2

]+

[− ~2

2m∇2

v +1

2mω2v2− 1

2λmω2v2

]this is now two separated harmonicoscillators, the second with an addednegative potential energy term

the ground state energies of this three-dimensional oscillator can simply bewritten down

Eu =3

2~ω

Ev =3

2~ω√

1− λ

Egs =3

2~ω(1 +

√1− λ)

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 16 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉

〈Vee〉 = −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 − 2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]

= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

Build a variational trial functionfrom the single oscillator solutions

by symmetry the scaler product in-tegrates to zero

ψ(~r1,~r2) =(mωπ~

)3/2e−mω(r

21+r22 )/2~

〈H〉 =3

2~ω +

3

2~ω + 〈Vee〉

= 3~ω + 〈Vee〉〈Vee〉 = −λ

4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(~r1 −~r2)2 d3~r1d

3~r2

= −λ4mω2

(mωπ~

)3 ∫e−mω(r

21+r22 )/~(r21 −����2~r1 ·~r2 + r22 ) d3~r1d

3~r2

= −λ4mω2

(mωπ~

)32

∫e−mω(r

21+r22 )/~r21 d

3~r1d3~r2

= −λ2mω2

(mωπ~

)3(4π)2

∫ ∞0

e−mωr22 /~r22 dr2

∫ ∞0

e−mωr21 /~r41 dr1

= −λ8m4ω5

π~3

[1

4

~mω

√π~mω

][3

8

~2

m2ω2

√π~mω

]= −3

4λ~ω

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 17 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)

2− λ2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)

2− λ2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)

2− λ2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ

√1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ

√1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ

√1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ

1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18

Problem 7.17 (cont.)

The expectation value of theHamiltonian is thus

comparing to the exact answer

〈H〉 = 3~ω − 3

4λ~ω

= 3~ω(

1− λ

4

)

〈H〉 = 32~ω

(2− λ

2

)2− λ

2

1− λ2

1− λ+ λ2

4

divide by the constants

subtract 1

square and apply bino-mial expansion

Egs = 32~ω(1 +

√1− λ)

1 +√

1− λ√

1− λ1− λ

clearly 〈H〉 > Egs

C. Segre (IIT) PHYS 406 - Spring 2018 February 01, 2018 18 / 18