Cosmological Distances

Post on 10-Jan-2016

56 views 0 download

Tags:

description

Cosmological Distances. Intro Cosmology Short Course Lecture 3 Paul Stankus, ORNL. A. Riess American. Supernovae cosmology (1998). Two Modern Hubble Diagrams. Freedman, et al. Astrophys. J. 553 , 47 (2001). Riess, et al. (High-Z) Astron. J. 116 (1998). Generalize - PowerPoint PPT Presentation

Transcript of Cosmological Distances

Cosmological Distances

Intro Cosmology Short Course

Lecture 3

Paul Stankus, ORNL

Freedman, et al. Astrophys. J. 553, 47 (2001)

Riess, et al. (High-Z) Astron. J. 116 (1998)

W. Freedman Canadian

Modern Hubble constant (2001)

A. Riess American

Supernovae cosmology (1998)

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Two Modern Hubble Diagrams

Generalize

velocity redshift

distance magnitude

Einstein Equivalence

Principle Any small patch of GR

reduces to SR

Albert Einstein German

General Theory of Relativity

(1915)

x

t

x

t

General Curved Space

dτ 2 = dxμ gμν dxν

μν

∑Minkowski Space

x’

t’

dτ 2 = dt '( )2

− dx' c( )2

dτ = dt' For x’ constant “Proper time”

ds = dx' ' For t’’ constant Proper distance

ds2 ≡ −c 2dτ 2 = − cdt' '( )2

+ dx ' '( )2

x’’

t’’

dτ 2 = dt ' '( )2

− dx' ' c( )2 ?

What was the distance to that event?

Photons

Ust

t now

dτ 2 = dt 2 − a(t)[ ]2dχ 2 c 2 if dτ 2 > 0

ds2 = −c 2dt 2 + a(t)[ ]2dχ 2 if dτ 2 < 0Robertson-Walker

Coordinates

Past Event

Coordinate Distance Co-Moving Distance

= ds = a(now)ΔχA

B

∫ = Δχ

A B Well-defined… but is it

meaningful?

E

ds = 0A

E

NB: Distance along photon line

Galaxies at rest in the

Hubble flow

Three definitions of distance

Co-Moving/ Coordinate

Angular Luminosity

Photons

t

Emitted

a(t0)

Observed

Robertson-Walker

Coordinates

h

dAngular

Euclidean: hd

Define: dAngularh/

Euclidean: FI/4d2

Define: dLum2I/4F

t0

dLuminosity

Intensity IFlux F

t

Physical Radius a(t0)

Robertson-Walker

Coordinates

t

x

Physical Radius x

Newton/Minkowski

Coordinates

I

F

I

Ft0

F =I

4π (Δx)2

dLum ≡I

4πF= Δx

FEnergy/Area/TimeObserved =

IEnergy/TimeEmitted

4π a(t0)Δχ[ ]2

Area of sphere1 2 4 4 3 4 4

1

1+ z(t1, t0)Rate of photons1 2 4 3 4

1

1+ z(t1, t0)Redshift of photons1 2 4 3 4

dLum ≡IEmit

4πF Obs= a(t0)Δχ

Physical Radius

1 2 4 3 4 1+ z(t1, t0)( )Effect of

Cosmic Expansion

1 2 4 3 4

t1

Us Us

Flat

Astronomical Magnitudes

Rule 1: Apparent Magnitude m ~ log(FluxObserved a.k.a. Brightness)

Rule 2: More positive Dimmer

Rule 3: Change 5 magnitudes 100 change in brightness

mBolometric = −log1005 FEnergy/Area/Time

Observed( ) + Constant

= −5

2log10 FEnergy/Area/Time

Observed( ) + Constant

Rule 4: Absolute Magnitude M = Apparent Magnitude if the source were at a standard distance (10 parsec = 32.6 light-year)

M Bolometric = −5

2log10 IEnergy/Time

Emitted( ) + Constant

Some apparent magnitudes

0-5

-10 -20-15 -255

1015

2025

SunFull Moon

VenusSaturn

Ganymede

UranusNeptunePluto

MercuryMars

Jupiter

Sirius

CanopusVeg

a

Deneb

Gamma Cassiopeiae

Andromeda GalaxyBrightest

Quasar

Naked eye, daylight

Naked eye, urban

Naked eyeGround-based 8m telescope

x100 Brightness

(Source: Wikipedia)

mBolometric = −5

2log10 FEnergy/Area/Time

Observed( ) + C

M Bolometric = −5

2log10 IEnergy/Time

Emitted( ) + C'

m − M = −5

2log10 F Obs

( )+5

2log10 IEmit

( ) + C' '

= 5log10 IEmit F Obs( ) + C' '

= 5log10 dLuminosity( ) + C' ' '

If dLum ∝ z then

5log10 dLum( ) = 5log10 z( ) + C

m − M = 5log10 z( ) + C'

Extended Hubble Relation dLum z

Proxy for

log(dLum)

Magnitudes and Luminosity Distances

t0 Big Bang tt0 Now

a(t) = t t0( )2 3

Flat

H0 ≡˙ a (t0)

a(t0)=

2

3t0

Hubble constant

q0 ≡ −˙ ̇ a (t0)

a(t0)H02 =

1

2 Deceleration parameter

1+ z(t1, t0) = t02 3t1

−2 3 Redshift from t1 to t0

dχ γ (t)

dt= ±

c

a(t)

χ γ (t) = ±c

a(t')dt ' + Const∫

Recall from Lec 2

dLum (t1, t0) = a(t0)Δχ γ (t1, t0)(1+ z) =c

a(t)t1

t0∫ dt ⎛

⎝ ⎜

⎠ ⎟

Cosmology!1 2 4 3 4

(1+ z)

dLum (t1, t0) =c

H0

z + z2 4 + O(z3)[ ]

dLum (t1, t0) =c

H0

z +1

2(1− q0)z2 + O(z3)

⎡ ⎣ ⎢

⎤ ⎦ ⎥

More generally (all cosmologies):

Weinberg 14.6.8

Today’s big question:

Slope = Hubble

constant

Generic

0

Extended Hubble dLz

Open

2.512 in brightness

Generic

0

Open

Generic

0

Open