Coordination Polymers/ Metal-Organic Frameworks...2001, 34, 319 Oxtoby et al. PNAS 2002, 99, 4905;...

Post on 20-Dec-2020

1 views 0 download

Transcript of Coordination Polymers/ Metal-Organic Frameworks...2001, 34, 319 Oxtoby et al. PNAS 2002, 99, 4905;...

Coordination Polymers/

Metal-Organic Frameworks

Christoph Janiak

University of Düsseldorf, Germany

Email: janiak@uni-duesseldorf.de

Periodic, extended architectures/framework structures

Periodic, extended architectures/framework structures

collagen fiber from parallel

collagen fibrils:

function

Periodic, extended architectures/framework structures,diatoms:

Periodic, extended architectures/framework structures

Collembola

(springtails)

surface structure:

(tooth)

enamel prisms:

Metal-organic networks / Coordination polymers

+

bridging organic ligand

M

M M M M1D chains

M M M

M M M

M M M

2D nets

M M M

M M M

M M MM

M M M

M M M

MM3Dframeworks

From metal-organic networks

to hydrogen-bonded Networks

M

N

N D

A

MN

N

D

A

M

N

ND

A

M N

N

D

A

D = hydrogen donorA = hydrogen acceptor

Metal-organic networks H-bonded networks

M M M M1D chains

M M M

M M M

M M M

2D nets

M M M

M M M

M M MM

M M M

M M M

MM3Dframeworks

covalent

less flexible

more directional

network

electrostatic

more flexible

less directional

network

Metal-organic networks:

Nodal properties of metal and ligands

M M

M M

Metal ions or metal-ligand fragments with free coordination sites

M M MM

bridging ligands

M M M

M M

M M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M M

M M

M

M

M

M

M

M

M

M

M

M

M

M

1D chain

2D net

3D framework

James,

Chem. Soc. Rev.

2003, 32, 276

Eddaoudi et al.,

Acc. Chem. Res.

2001, 34, 319

Oxtoby et al.

PNAS 2002,

99, 4905;

Eddaoudi et al.,

PNAS 2002,

99, 4901

Coordination polymers:

Nodal properties of metal and ligands

M M

M M

Metal ions or metal-ligand fragments with free coordination sites

M M MM

bridging ligands

M M M

M M

M M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M M

M M

M

M

M

M

M

M

M

M

M

M

M

M

1D chain

2D net

3D framework

James,

Chem. Soc. Rev.

2003, 32, 276

Eddaoudi et al.,

Acc. Chem. Res.

2001, 34, 319

Oxtoby et al.

PNAS 2002,

99, 4905;

Eddaoudi et al.,

PNAS 2002,

99, 4901

Coordination polymers:

Nodal properties of metal and ligands

M M

M M

Metal ions or metal-ligand fragments with free coordination sites

M M MM

bridging ligands

M M M

M M

M M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M M

M M

M

M

M

M

M

M

M

M

M

M

M

M

1D chain

2D net

3D framework

James,

Chem. Soc. Rev.

2003, 32, 276

Eddaoudi et al.,

Acc. Chem. Res.

2001, 34, 319

Oxtoby et al.

PNAS 2002,

99, 4905;

Eddaoudi et al.,

PNAS 2002,

99, 4901

Metal-organic networks:

Nodal properties of metal and ligands

M M

M M

Metal ions or metal-ligand fragments with free coordination sites

M M MM

bridging ligands

M M M

M M

M M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M M

M M

M

M

M

M

M

M

M

M

M

M

M

M

1D chain

2D net

3D framework

James,

Chem. Soc. Rev.

2003, 32, 276

Eddaoudi et al.,

Acc. Chem. Res.

2001, 34, 319

Oxtoby et al.

PNAS 2002,

99, 4905;

Eddaoudi et al.,

PNAS 2002,

99, 4901

N N

4,4'-bipyridine

N N

pyrazineO

OO

O

oxalate

O

OO

O

benzene-1,4-dicarboxylate,terephthalate

O O

O

O

O

O

benzene-1,3,5-tricarboxylate,trimesate

NN

N

N

hexamethylene-tetramine

N

O

O

isonicotinate

D

D

D

D

tetra(4-cyanophenyl)methanetetra(4-carboxyphenyl)methane

D = –CN

–CO2–

N

N

N

N

N

N2,4,6-tris(4-pyridyl)-1,3,5-triazine

Metal-organic networks:

Examples of linear, trigonal and tetrahedral ligands

linear rigid

trigonal

tetrahedral

(also

linear flexible

possible)

Oxtoby et al., PNAS 2002, 99, 4905; Kitagawa, Masaoka, Coord. Chem. Rev. 2003, 246, 73;

Barnett, Champness, Coord. Chem. Rev. 2003, 246, 145; Zheng et al., Coord. Chem. Rev. 2003, 246, 185;

Ye et al., Coord. Chem. Rev. 2005, 249, 545; Zhang, Chen, Chem. Commun. 2006, 1689

Metal-organic networks / Metal-organic frameworks (MOFs):

Application-oriented properties

Dalton Trans.

(Review)

2003, 2781

Conductivity

Non-linear optics

M M... ...

M M... ...

M

...

...M... ...

...

...

M M... ...

M

...

M... ...

...

...

M

...

...

M... ...

M

...

M... ...

...

...

...

...

...

...

...

...

...

...

Catalysis

Chirality

Luminescence

Magnetism

Porosity

Zeolitic behavior

Spin-crossover

N N

O

O

O

O

O

OO

O

N N

O

O

O

O

OO

O

ON

N N

New J. Chem. 2010, 34, 2366

Coordination polymers / Metal-organic frameworks (MOFs):

A dynamic field

New J. Chem. 2010, 34, 2366

Interests in coordination polymers

crystal engineeringanion control

solvent control

ligands

architecture

helices

chirality

catalysis

hydrothermal synthesis

interpenetration

NLO-effects, -materials

polymorphism

(nano/micro-) porosity

zeolite analogs

molecular magnets

sensors

electrical conductivity

from structure to function

spin-crossover

noncovalent interactions

enantioselectivity

molecular sieves

metal

ligandsupramolecular

interactions

solvent

anion

temperature

time stoichiometry

concentration

pH

periodicmolecular-based

architecture

reaction/crystallization conditions

Our approach:

From molecular building blocks to periodic, extended architectures

B

ABA

construction aspects:

Crystallization from molecular building blocks in solution

B

A

solution

solvent

BA

solution

T

solvent/solution

reaction time, days

temperature

autoclave forhydrothermal synthesis

Coordination polymers with

multidentate ligands

NN

NN

M M

N

N

N

N

N

N

N

N

NN

NN

M M

additional functionality,

framework structure with anchor groups

JCS Dalton Trans. 1999, 183; JCS Dalton Trans. 1999, 3121.

The concept:

N

N

N

N

NN

NN

N

NNC CN

BN

N

N

N

N

NNN

N

H

Introduction

pyrazolylborate ligands

Trofimenko, Scorpionates, Imperial College Press, London 1999

N

B

N N

N

H

N

N

N

N

N

NB

HH

hydro-tris(pyrazolyl)borate dihydro-bis(pyrazolyl)borate

- molecular chelate complexes

KBH4 + n H-azolyl K[H4-nB(azolyl)n] + n H2

Modified poly(pyrazolyl)borate ligands

N

B

N N

N

H

N

N

N

NN

N

NN

B

HH

tris(pyrazolyl)borate

bis(triazolyl)borate

N

N

B

N

N

H

N

N

tris(indazolyl)borate

N

B

N N

NNN

H

N

NN

N

NN

N

NN

NN

B

HH

tris(triazolyl)borate

bis(tetrazolyl)borate

Chem. Commun. 1994, 545; Chem. Eur. J. 1995, 1, 637; Z. Anorg. Allg. Chem. 2000, 626, 2053

Modified poly(pyrazolyl)borate ligands

N

B

N N

N

H

N

N

N

NN

N

NN

B

HH

tris(pyrazolyl)borate

bis(triazolyl)borate

N

N

B

N

N

H

N

N

tris(indazolyl)borate

N

B

N N

NNN

H

N

NN

N

NN

N

NN

NN

B

HH

tris(triazolyl)borate

bis(tetrazolyl)borate

endodentate

chelating tometal atoms

molecularcomplexes

Chem. Commun. 1994, 545; Chem. Eur. J. 1995, 1, 637; Z. Anorg. Allg. Chem. 2000, 626, 2053

Modified poly(pyrazolyl)borate ligands

N

B

N N

N

H

N

N

N

NN

N

NN

B

HH

tris(pyrazolyl)borate

bis(triazolyl)borate

N

N

B

N

N

H

N

N

tris(indazolyl)borate

N

B

N N

NNN

H

N

NN

N

NN

N

NN

NN

B

HH

tris(triazolyl)borate

bis(tetrazolyl)borate

exodentate

bridgingbetween

metal atoms

networks

Chem. Commun. 1994, 545; Chem. Eur. J. 1995, 1, 637; Z. Anorg. Allg. Chem. 2000, 626, 2053

Coordination polymers from

modified poly(pyrazolyl)borato ligands

N

B

N N

NNN

H

N

NN

N

NN

N

NN

NN

B

HH

tris(triazolyl)borateN3

bis(tetrazolyl)borateN4

-0.19

-0.11 -0.09-0.13

-0.18

charge distribution(AM1-calculation)

Coordination polymers with

modified poly(pyrazolyl)borate ligands

NN

NN

NN

B

N

MnMn

H2O

OH2

N

H2O

OH2

N

N

N

NN

N

NB

NH

N

N

HN

NN

N

NN

B

N

N N

N

N

NN

N

NB

NH

N

N

H

·4H2O

·4H2O

N

NN

N

NN

B

N

H

ZnZn

N

N

Zn

·1.5H2O

1D

Mn-N3

3D

Zn-N3

Chem. Eur. J. 1995, 1, 637.

JCS Dalton Trans. 1994, 2947.

Mn-N3

water substructure

Chem. Eur. J. 1995, 1, 637.

Mn-N3

C-H...O/N hydrogen bonding

Chem. Eur. J. 1995, 1, 637

Chem. Eur. J. 1996, 2, 991

Polyhedron 2002, 21, 553

Zn-N3

linkage isomers

3-D coordination polymer

NN

NN

NN

B

NH

ZnZn

N

N

Zn

NB

N N

NNN

H

N

NN

B

N

NZn

N

NN

N

H

N

NN

Zn2+ + 2 N3-

days months

chelate complex

J. Chem. Soc. Dalton Trans. 1994, 2947

H2O H2O

6 H2O 1.5 H2O

kinetic product thermodynamic product

Zn-N3

porous 3-D coordination polymer ?

Zn-N3

porous 3-D coordination polymer ?

Zn-N3

porous 3-D coordination polymer ?

B

N

N N

H H

N

NN

Tl (Tl)

Tl Tl

Coordination polymers with

modified poly(pyrazolyl)borate ligands

N

NN

NN

N

N

NB

H

H

N

NN

NN

N

NNB

H

H

N

NN

NN

N

NN

NN

N

NN B

H

H

N

N

NB

H

H

M

OH2

H2O

M

M

M

OH2

H2O

OH2

H2O

OH2

H2O

OH H

OH H

M = Mn, Fe, Co (Ni, Cu), Zn, Cd

Polyhedron 2002, 21, 553.

Chem. Eur. J. 1995, 1, 637.

3D

2D

with bis(triazolyl)borate

continuing work by

Lobbia, Pettinari et al.

JCS Dalton Trans. 2002, 2333;

Inorg. Chim. Acta 2005, 358, 1162.

Youm et al., Bull. Kor. Chem. Soc.

2006, 27, 1521.

Metal-N4

symmetric versus distorted grids

NN

N

NN

NN

N

BH

H

NN

N

N N

NN

N

BH

H

NN

N

NN

NN

N

NN

NN

N BH

H

NN

NB

H

H

M

M

M

M

NN

N

NN

NN

NB

H

H

NN

N

NN

NN

NBH

H

NN

N

NN

NN

N

NN

NN

N BH

H

NN

NB

H

H

M

M

M

M

M = Mn,Fe,Co,Zn,Cd M = Ni,Cu

NH3

H3N

NH3

H3N

NH3

H3N

NH3

H3N

OH2

H2O

OH2

H2O

OH2

H2

O

OH2

H2O

crystallization from H2O crystallization from NH3/H2O

aqua ligands ammine ligands

HO

H

HO

H

crystal water no crystal water

Chem. Eur. J. 1995, 1, 637

Chem. Ber. 1995, 128, 323

Metal-N4

the water substructure as a reinforcing bar

Chem. Ber. 1995, 128, 323

Ag-N3

from structure to function

space group: P 21cn (Pna 21)

N

NN

N

NN

B

N

H

Ag

Ag

Ag

N

Nfunction: 2nd order NLO effect (frequency doubling)

J. Am. Chem. Soc. 1996, 118, 6307

SHG signal intensity: 2 W/cm2

(1064 to 532 nm)

coefficient:

d33 = 1/2 ccc = (6±3)·10-15

m/V

indices of refraction:

(at 532 nm)

nc = 1.661

na = 1.584

structure: 2-D coordination polymer

Metal-organic networks:2[Ag(µ-HB(C2H2N3)3]

Non-linear optics b

a

c

1064 nm

532 nm non-centrosymmetric

space group: Pna 21

N

NN

N

NN

B

NH

Ag

Ag

Ag

N

N

JACS 1996, 118, 6307

SHG: 2 W/cm2

d33 = 1/2 ccc = (6±3)·10–15 m/V

Metal-organic networks:

Non-linear optics

Non-linear optics

NCO2

N

CO2–

NCO2

N

CO2–

N CO2– N

CO2–

+ Zn2+

, Cd2+

Evan, Lin,

Acc. Chem. Res. 2002, 35, 211

Dalton Trans. 2003, 2781

Coordination polymers with multidentate ligands

NN

NN

M M

N

N

N

N

N

N

N

N

NN

NN

M M

additional functionality

framework structure with anchor groups

N

N

N

N

N N

N

N

N

N

N

N

NC CN

N N

J. Chem. Soc., Dalton Trans. 1999, 183

Synthesis 1999, 959

Synth. Commun. 1999, 29, 3341

N

NNC CN

5,5'-dicyano-2,2'-bipyridine

N NNC CN

+ Ag-saltsvariation of anionvariation of solvents

?

Coordination polymers

with modified 4,4'-bipyridine ligands

J. Chem. Soc., Dalton Trans. 1999, 183

Coordination polymers with multidentate ligands:

Control elements for metal-ligand coordination

chelating

bidentate tetradentatetridentate

N N

AgN N

Ag

N N

Ag

NC CN

N NNC CN

NC CN

NCanion

Ag

1D-chain

NC CN AgAg

CN NC

2D-netanion

anion

J. Chem. Soc., Dalton Trans. 1999, 183

"non"-coordinating

BF4–, PF6

–coordinating

NO3–, CF3SO3

–"non"-coordinating

PF6–

solvent

EtOH/THF

or

MeCN/EtOH/CH2Cl2

solvent

MeCN/EtOH/

toluene

Coordination polymers:

Effect of solvent changes

molecular chelatecomplex

2D coordination polymer

N N

AgN N

Ag

NC CN

N NNC CN

NC CN AgAg

CN NC

2D-netanion

anion

J. Chem. Soc., Dalton Trans. 1999, 183

"non"-coordinating

BF4–, PF6

–"non"-coordinating

PF6–

Understanding?

Design at will?

solvent

EtOH/THF

or

MeCN/EtOH/CH2Cl2

solvent

MeCN/EtOH/

toluene

32.62 Kagomé net

2D Coordination polymer:2[Ag(µ3-L)]PF6·1/2C6H5CH3

J. Chem. Soc., Dalton Trans. 1999, 183

32.62 Kagomé net

2D Coordination polymer:2[Ag(µ3-L)]PF6·1/2C6H5CH3

J. Chem. Soc., Dalton Trans. 1999, 183

Coordination polymers

with modified 4,4'-bipyridine ligands

N

N

N

N

N N

NN

NN

4,4'-bipyridine

2,2'-dimethyl-4,4'-bipyrimidine

2,2'-bi-1,6-naphthyridine

Synthesis, 1999, 959

charge distribution(AM1 calculation)

-0.16

-0.18

-0.14-0.13

+ M-saltsvariation of Mvariation of anionvariation of conditions

?

NN

NN

2,2'-dimethyl-4,4'-bipyrimidine

NN

NN

Coordination polymers

with modified 4,4'-bipyridine ligands

J. Chem. Soc., Dalton Trans. 1999, 3121

CuII

CuI

AgI

Coordination polymers with multidentate ligands:

Control elements for metal-ligand coordination

chelatingbidentate tetradentate

bridgingtridentate

NN N

N

M

NN N

N

M

MMNN N

N

M

MNN

NN

MM

J. Chem. Soc. Dalton Trans. 1999, 3121

M = NiII

CuI

CuI

metal

AgI

+ Cl–/OH2

+ I–

+ NO3–

+ I–

+ PF6–

+ PF6–

+ NO3–

(1:1)

coordinating anion "non"-coordinating anion

+ heat + RT

different thermal treatment

Bodar-Houillon et al.,

Inorg. Chem.

1995, 34, 5205

2[Cu2(µ3-I)2(µ-L)]

2[Cu2(µ3-I)2(µ-L)]

2[Ag3(NCCH3)3(µ3-L)](PF6)3

63 net

2[Ag3(NCCH3)3(µ3-L)](PF6)3

63 net

Coordination polymers with multidentate ligands

NN

NN

M M

N

N

N

N

N

N

N

N

NN

NN

M M

additional functionality

framework structure with anchor groups

N

N

N

N

N N

N

N

N

N

N

N

NC CN

N N

N

N

N

N

M

M

M = CoII, ZnII, CdII

N NN N M

M

"non"-coordinating anion

CuI+ PF6–+ NCS–

coordinating anion

Coordination polymers with multidentate ligands:

Control elements for metal-ligand coordination

Chem. Commun. 1998, 2637

2,2'-bi-1,6-naphthyridine

bidentate bridging tridentate

2-D Coordination polymers with binaphthyridine:

Interpenetration

N

N

N

N

M

M

M = CoII, ZnII, CdII

N

N

N

N

N

N

N

N

N

N

N

N

M

M

NCS

NCS

NCS

SCN

SCN

SCN

SCN

NCS

15.8 - 16 Å

M

M

M

M

=

M

M

N

N

N

N

Chem. Commun. 1998, 2637

2-D coordination polymers with binaphthyridine

interpenetration

3.25 Å

N

N

N

N M

M

NCS

SCN

Chem. Commun. 1998, 2637

2-D coordination polymers with binaphthyridine

interpenetration

3.25 Å

N

N

N

N M

M

NCS

SCN

Chem. Commun. 1998, 2637

Interpenetration

1D 1D 3D 3D

3D 3D 3D 3D

Batten, Robson,

Angew. Chem. Int. Ed. 1998, 37, 1460

Carlucci, Ciani, Proserpio

2D 2D 2D 2D

Coordination polymers:

Spin-crossover

Spin-crossover

N N

N

R

N NNR

N N

N

R

Fe Fe

N N

N

R

N NNR

N N

N

R

Fe

N N

N

R

N NNR

N N

N

R

Fe

N N

N

R

N NNR

N N

N

R

FeFe Fe

d6

1A1g,

low-spin

5T2g,

high-spin

NFe

N N

N

N

N

FeII

(eg)

(t2g)

Temp. increase,green light,

pressure decrease

Temp. decrease,red light,

pressure increase

van Koningsbruggen,

Top. Curr. Chem.

2004, 233, 123.

Dalton Trans.

(Review)

2003, 2781.

Haasnoot,

Coord. Chem. Rev.

2000, 200–202, 131.

N

N

N

N

+ Fe2+

+ NCS–

+ EtOH

Coordination polymers:

Spincrossover

Spin-crossover

Kepert et al.,

Science 2002, 298, 1762

Porosity

Coordination polymers:

Spin-crossover – cooperative behavior

N N

N

R

N NNR

N N

N

R

Fe Fe

N N

N

R

N NNR

N N

N

R

Fe

N N

N

R

N NNR

N N

N

R

Fe

N N

N

R

N NNR

N N

N

R

FeFe Fe

Gütlich et al.,

Eur. J. Inorg. Chem. 2007, 4481.

Example of recent work:

N N

N

HN O

tba

[{Fe(tba)3}X2]·nH2O

N

NN

NN

N

btre1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

NM

M

M

M

possiblebridging mode:

Metal-organic networks

with bridging bis(1,2,4-triazolyl)-ligands

Our choice:

spin-crossover,

magnetic interactions

with appropriate

metal atoms

rarely used so far: 2{M(NCS)2(µ2-btre-kN1,N1')2(NCS)2} (M = Fe, Co)

3{[Cu3(µ4-btre-kN1,N2,N1',N2')2(µ3-btre-kN1,N2,N1')4(H2O)2]2(ClO4)12·2H2O}

Garcia, Gütlich et al., Inorg. Chem. 2005, 44, 9723.

Garcia, Haasnoot, Kahn et al. Eur. J. Inorg. Chem. 2000, 307.

N

N

N

NN

N

1,2-bis(1,2,4-triazol-1-yl)ethane

1,4-bis(1,2,4-triazol-1-yl)butane

M

M

N

NNN N

NM

M

N

N

NN

NN

MM

1,4-bis(1,2,4-triazol-1-ylmethyl)benzene

1,3-bis(1,2,4-triazol-1-yl)propane

N NN

N NNM M

etc.

Metal-organic networks

with bridging bis(1,2,4-triazol-1-yl)-ligands

Examples of recent work:

Zhu et al., J. Coord. Chem. 2006, 59, 513.

Wang et al., Chem. Eur. J. 2006, 12, 2680.

Frequently used bis-triazolyl ligands:

Wang et al., Acta Cryst. 2007, E63, m2416.

Peng et al., Cryst. Growth&Des. 2006, 6, 994.

Tian et al., Inorg. Chem. 2008, 47, 3274.

fluconazole

N NN

N NN M

OH

M

F

F

M M

Metal-organic networks

with bridging bis(1,2,4-triazolyl)-ligands

Frequently used bis-triazolyl ligands:

Li, Ma, Su et al., Dalton Trans. 2008, 3824.

Dalton Trans. 2008, 2015.

Inorg. Chem. 2007, 46, 8283.

Han et al., Eur. J. Inorg. Chem. 2006, 1594.

N

NN

NN

N

btre1,2-bis(1,2,4-triazol-4-yl)ethane

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d ZnX2

CuX2

CdX2

X = Cl, Br, ClO4, (SO4)1/2

Cu(II) Cu(I)

0D, 1D, 2D, 3D networks

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d X = Cl, Br, ClO4, (SO4)1/2

Cu(II) Cu(I)

0D, 1D, 2D, 3D networks

Example for 1D:

ZnX2

CuX2

CdX2

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d X = Cl, Br, ClO4, (SO4)1/2

Cu(II) Cu(I)

0D, 1D, 2D, 3D networks

Example for 1D:

ZnX2

CuX2

CdX2

- - - interstrand C-H···N

Inorg. Chem. 2009, 48, 2166.

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d X = Cl, Br, ClO4, (SO4)1/2

0D, 1D, 2D, 3D networks

Example for 2D:

Cu(II) Cu(I)

2D 2[Cu2(µ2-Cl)2(µ4-btre)]

ZnX2

CuX2

CdX2

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d X = Cl, Br, ClO4, (SO4)1/2

0D, 1D, 2D, 3D networks

Example for 2D:

Cu(II) Cu(I)

2D 2[Cu2(µ2-Cl)2(µ4-btre)]- - - interlayer C-H···Cl

-stacking

ZnX2

CuX2

CdX2

Inorg. Chem. 2009, 48, 2166.

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d X = Cl, Br, ClO4, (SO4)1/2

0D, 1D, 2D, 3D networks

Examples for 3D:

Cu(II) Cu(I)

3D 3{[Cu(µ4-btre)]ClO4 · ~0.25H2O}

ClO4–, H2O

ZnX2

CuX2

CdX2

Inorg. Chem. 2009, 48, 2166.

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3d X = Cl, Br, ClO4, (SO4)1/2

Cu(II) Cu(I)

0D, 1D, 2D, 3D networks oxidative ligand decomposition

formation of cyanide

3D interpenetrated nets

3D 3[Cu2(µ2-CN)2(µ4-btre)]

ZnX2

CuX2

CdX2

Inorg. Chem. 2009, 48, 2166.

Metal-organic networks

with 1,2-bis(1,2,4-triazol-4-yl)ethane

N

NN

NN

N H2O, 180 °C, 3dZnX2

CuX2

X = Cl, Br, ClO4, (SO4)1/2

Cu(II) Cu(I)

0D, 1D, 2D, 3D networks oxidative ligand decomposition

formation of cyanide

3D interpenetrated nets

interpenetration control through stacking

Inorg. Chem. 2009, 48, 2166.

1,2-bis(1,2,4-triazol-4-yl)ethane networks:

Structure – solid-state CPMAS 13C NMR correlation

N

NCH

N

HC

CH2

NN

NM

M

M

M

1,2-bis(1,2,4-triazol-4-yl)ethane networks:

Structure – solid-state CPMAS 13C NMR correlation

(bold = occ. fact. 1)

N

NCH

N

HC

CH2

NN

NM

M

M

M

N

NCH

N

HC

CH2

H2C N

CH

N

N

HC

M

M

M

M

+

Inorg. Chem. 2009, 48, 2166.

1,2-bis(1,2,4-triazol-4-yl)ethane networks:

Structure – solid-state CPMAS 13C NMR correlation

(bold = occ. fact. 1)

(normal = occ. fact. 0.5)

N

NCH

N

HC

CH2

NN

NM

M

M

M

N

NCH

N

HC

CH2

H2C N

CH

N

N

HC

M

M

M

M

+

N

NCH

N

HC

CH2

H2C N

N

N

HC

M

M

+

Metal-organic networks / Metal-organic frameworks (MOFs):

Porosity and zeolitic behavior

M M M

M M M

M M MM

M M M

M M M

MM

M M M

M M M

M M MM

M M M

M M M

MM

Zeolitic behaviorPorosity

– ab/desorption, gas storage

– ion exchange

– enantiomer separation

– selective catalysis

Eddaoudi et al., Acc. Chem. Res. 2001, 34, 319;

Kesanli, Lin, Coord. Chem. Rev. 2003, 246, 305;

Rao et al., Angew. Chem. Int. Ed. 2004, 43, 1466;

Kitagawa et al., Angew. Chem. Int. Ed. 2004, 43, 2334;

Kitagawa, Uemura, Chem. Soc. Rev. 2005, 34, 109;

Rowsell, Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670;

Mueller et al., J. Mater. Chem. 2006, 16, 626;

Kepert, Chem. Commun. 2006, 695;

Kitagawa et al. Chem. Commun. 2006, 701;

O O

OO

Metal-organic networks / Metal-organic frameworks (MOFs):

Porosity and zeolitic behavior

Zeolitic behaviorPorosity

+ {Zn4(µ4-O)(MeOH)4}

O. M. Yaghi et al., Science 2002, 2003

Rowsell, Yaghi, Angew. Chem. Int. Ed., 2005, 117, 4670

Schröder, Champness et al., CrystEngComm, 2007, 9, 438

CH4, H2 storage

Mixed-ligand metal-organic networks:3{[Ni3(µ3-L1)2(µ4-L2)2(µ-H2O)2]·~22H2O}

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

potential solvent volume

1621 Å3/unit cell

= 52%

(H2O ~40 Å3)

Porosity ?

Dalton Trans. 2008, 1734

Mixed-ligand metal-organic networks:3{[Ni3(µ3-L1)2(µ4-L2)2(µ-H2O)2]·~22H2O}

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =Porosity ?

Dalton Trans. 2008, 1734

P21/c

R1/wR2 [>2(I)] 0.0398 / 0.1076

R1/wR2 (all) 0.0473 / 0.1125

Some of the disordered O positions refined isotropically

with "anti-bumping" restraints (BUMP).

Occupancies refined to about 0.15, 0.30, 0.60, 0.90 and 1.000,

summed up to 22 O atoms per Ni3

3{[Ni3(µ3-L1)2(µ4-L2)2(µ-H2O)2]·~22H2O} – careful drying

3{[Ni3(µ2-L1)2(µ4-L2)2(µ-H2O)2(H2O)2]·4H2O}

Porosity ?

solid state crystal to-

crystal transformation

under vacuum

Porosity

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

but ...

Dalton Trans. 2008, 1734.

P21/c

b = 13.5328(2) Å

b = 8.2320(5) Å

Mixed-ligand coordination polymers:3{[Zn3(µ4-L1)2(µ4-L2)2(H2O)2]·2H2O}

potential solvent volume

94 Å3/unit cell

= 7%

(H2O ~40 Å3)

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

Porosity ?

Dalton Trans. 2008, 1734.

3{[Zn3(µ4-L1)2(µ4-L2)2(H2O)2]·2H2O} – careful drying

3{[Zn3(µ5-L1)2(µ4-L2)2]·~0.67H2O}

Porosity ?

solid state

single-crystal

to-single-crystal

transformation

between 100-280 °C

Porosity

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

Dalton Trans. 2008, 1734.

Mixed-ligand metal-organic networks:3{[Ni3(µ3-L1)2(µ4-L2)2(µ-H2O)2]·~22H2O}

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =but ...

flexible framework,

dynamic porous properties

150 °C/12 hPa

40 °C/56 hPa

–H2O

+H2O

for dynamic porous properties, see Kitagawa, Uemura, Chem. Soc. Rev. 2005, 34, 109.

Stefan Henninger

J. Am. Chem. Soc. 2009, 131, 2776.

Principle process in an adsorption chiller

Stefan Henninger

J. Am. Chem. Soc. 2009, 131, 2776.

Adsorption chillers: Water loading lifts

Stefan Henningerzeolites

J. Am. Chem. Soc. 2009, 131, 2776.

Metal-organic networks:

Magnetism

Magnetism

organic ligands for stronger magnetic coupling:

nitronyl nitroxide

radical

N NO O

R

N

M M

N

pyrazolate

O

M M

O

R

carboxylate

N N

N N

M M

2,2'-bipyrimidine

O O

O O

M M

oxalate

M M

Batten, Murray,

Coord. Chem. Rev.

2003, 246, 103.

Maspoch et al.,

J. Mater. Chem.

2004, 14, 2713.

Maspoch, et al,

Chem. Soc. Rev.,

2007, 36, 770.

Metal-organic networks:

Magnetism

Magnetism

organic ligands for stronger magnetic coupling:

nitronyl nitroxideradical

N NO O

R

N

M M

N

pyrazolate

O

M M

O

R

carboxylate

N N

N N

M M

2,2'-bipyrimidine

O O

O O

M M

oxalate

M M

N N

N

M M

triazolate

N N

N

M M

triazole

RM

Batten, Murray,

Coord. Chem. Rev.

2003, 246, 103

Maspoch et al.,

J. Mater. Chem.

2004, 14, 2713

Maspoch, et al,

Chem. Soc. Rev.,

2007, 36, 770

Metal-organic networks:

Magnetism

Magnetism

= Mn(II) = Cr(III)

anionic net: [MIIMIII(ox)3]–C

CO

OO

O

Example:

Dalton Trans.

2003, 2781

Batten, Murray,

Coord. Chem. Rev.

2003, 246, 103

Maspoch et al.,

J. Mater. Chem.

2004, 14, 2713

Maspoch, et al,

Chem. Soc. Rev.,

2007, 36, 770

Metal-organic networks:

Magnetic interactions based on triazole ligands

NN

N

CuCu

N

Cl(Br)

Example of recent work:

Drabent et al., Inorg. Chem. 2008, 47, 3358.

{[Cu(μ-OH)(μ-ClPhtrz)][(H2O)(BF4)]}n

ClPhtrz

Metal-organic networks

constructed from triazolate ligands

N N

N

M M

triazolate

M

RR

Zhang, X.M. Chen, Chem. Commun.

(Review) 2006, 1689.

also

Barea, Sironi et al., Dalton Trans. 2008, 1825,

R = H

R = Et

Recent examples

R2tz –

{Cu(H2tz)}n

{Cu(Et2tz)}n

Magnetism

Mixed-ligand metal-organic networks:3{[Ni3(µ3-L1)2(µ4-L2)2(µ-H2O)2]·~22H2O}

intra-Ni3 trimer antiferromagnetic coupling with J = –13.88(8) cm–1

O

–O

O–

O

O–OL1 =

N

NN

NN

NL2 =

Dalton Trans. 2008, 1734.

Mixed-ligand metal-organic networks:3{[Cu4(µ5-L1)2(µ3-OH)2(µ4-L2)]·2H2O}

Cu1Cu2'

Cu2Cu1'

2J32J1

2J2

2J2

2J3

chair-shaped or

stepped-cubane Cu4O4

2J1 = 258 cm–1,

2J2 = –416 cm–1,

2J3 = 484 cm–1

antiferromagnetic coupling, three pathways

with Joaquin Sanchiz

Magnetism

2∞[Cu2(µ5-btb)(µ-OH)(µ-H2O)]

with ferromagnetically coupled Cu2 units

J

J

j3

j2

J

j3

j2

J

j3

j2

Cu1

Cu1

Cu1

Cu1

Cu2

Cu2

Cu2

Cu2

Magnetism

J = 83(1) cm–1

j2 = 0.161(1) cm–1

O–

O

O–Obtb =

O

O–

with J. Sanchiz, Dalton Trans. 2008, 4877.

Metal-organic networks:

Luminescence

Zn

Ag Cd

Au

Coordination polymers with

Eu Gd Tb

Dalton Trans. 2003, 2781

Zheng, Chen, Aust. J. Chem. 2004, 57, 703

LMCT

LLCT

ff

Luminescence

Mixed-ligand metal-organic networks :3{[Zn3(µ4-L1)2(µ4-L2)2(H2O)2]·2H2O}

Luminescence

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

Dalton Trans. 2008, 1734

Mixed-ligand coordination polymers:2∞{[Cu2(µ-L-tryptophanato)2(µ-4,4'-bipyridine)(H2O)2](NO3)2}

L2 =

NH2

O

–O

L1 =

N N

N

* S

Chirality

Mixed-ligand coordination polymers:2∞{[Cu2(µ-L-tryptophanato)2(µ-4,4'-bipyridine)(H2O)2](NO3)2}

Chirality

L2 =

NH2

O

–O

L1 =

N N

N

* S

Coordination polymers as catalysts

Lit.: [RuCl2(PPh3)3]

[RuCl2(L)3/2]

L = P P

OOH

+

OHO

+

NaOH

HH

Catalysis

[RuCl2(PPh3)3]: R. L. Chowdhury, J.-E. Bäckvall, Chem. Commun. 1991, 1063.

3 .5 0 4 .0 0 4 .5 0 5 .0 0 5 .5 0 6 .0 0 6 .5 00

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

4 5 0 0 0 0

T im e -->

A b u n d a n c eT IC : T H O M A S 1 5 .D

OHH

t = 1.5 h

O

O+Toluol

(int. stand.)

3 .5 0 4 .0 0 4 .5 0 5 .0 0 5 .5 0 6 .0 0 6 .5 00

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

4 0 0 0 0 0

T im e -->

A b u n d a n c eT IC : T H O M A S 1 9 .D

t = 7.5 h

[RuCl2(L)3/2]

L =

P P

/NaOH

– GC-MSOHH

0

10

20

30

40

50

60

70

80

90

100

0 5 10Time [h]

Co

nv

ers

ion

[%

]

Coordination polymers as catalysts

Catalysis

catalyst recycling after t = 6 h

[RuCl2(L)3/2]OOH

+

OHO

+

NaOH

HH

[RuCl2(L)3/2]

L =

P P

/NaOH

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

Recycling [no.]

Co

nv

ers

ion

[%

]Recycling Exp A

Recycling Exp B

Coordination polymers as catalysts

Catalysis

O

OO

O

HNO

N

Zn2+

- homochiral- chiral 1D channels- 47% free volume

+ ROH CH3C(O)OR +

2{[2H3O][Zn3(µ3-O)L6]·12H2O}

O2N

NO2CH3C(O)O

O2N

NO2HOA

A= L

**

Coordination polymers:

Catalysis and chirality

Porosity

Catalysis Chirality

Zeolitic behavior

Kim et al., Nature 2000, 404, 982

Kesanli, Lin,

Coord. Chem. Rev.

2003, 246, 305

Dalton Trans. 2003, 2781

Summary:

Metal-organic networks

N

NN

NN

N

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

mixed-ligand

1,2-bis(1,2,4-triazol-1-yl)ethane

O–

O

O–O

O

O–

benzene-1,2,3-carboxylate

Magnetism

structure – CPMAS 13C NMR correlation

Luminescence

crystal-to-

crystal

transition

Summary:

Metal-organic networks

N

NN

NN

N

N

NN

NN

NL2 =

O

–O

O–

O

O–OL1 =

mixed-ligand

1,2-bis(1,2,4-triazol-1-yl)ethane

crystal-to-

crystal

transition

Summary:

Metal-organic networks: Application-oriented properties

Conductivity

Non-linear optics

M M... ...

M M... ...

M

...

...M... ...

...

...

M M... ...

M

...

M... ...

...

...

M

...

...

M... ...

M

...

M... ...

...

...

...

...

...

...

...

...

...

...

Catalysis

Chirality

Luminescence

Magnetism

Porosity

Zeolitic behavior

Spin-crossover

N N

O

O

O

O

O

OO

O

N N

O

O

O

O

OO

O

ON

N N

Summary:

Metal-organic networks: Application-oriented properties

Conductivity

Non-linear optics

M M... ...

M M... ...

M

...

...M... ...

...

...

M M... ...

M

...

M... ...

...

...

M

...

...

M... ...

M

...

M... ...

...

...

...

...

...

...

...

...

...

...

Catalysis

Chirality

Luminescence

Magnetism

Porosity

Zeolitic behavior

Spin-crossover

O

O

O

O

OO

N

B

N N

NNN

H

N

NN

N N

N

N

NN

NN

N

N N

N

R

Acknowledgements

CPMAS NMR Dr. Anke Hoffmann, Univ. Freiburg

Magnetism Prof. J. Sanchiz, Univ. La Laguna

Mössbauer Dr. H. Winkler, Univ. Lübeck

TG/MS PD Dr. C. Näther, Univ. Kiel

Neutron diffraction Dr. S. Mason, ILL Grenoble

Heat transformation S. Henninger, ISE Freiburg

Luminescence Dr. H. Höppe, Univ. Freiburg

special X-ray Prof. C. Röhr, Univ. Freiburg

NP-TEM Dr. R. Thomann, Univ. Freiburg

Au-NP Dr. M. Krüger, Dr. M. Walter, Univ. Freiburg

Finances: DFG, FCI, AvH

Dr. Khalid Abu-Shandi

Frederik Blank

Anne-Christine Chamayou

Stefan Deblon

Dr. Thomas Dorn

Prof. Dr. M. Enamullah (AvH)

Marie Genitrini

Jerôme Krämer

Dr. Paul G. Lassahn

Hesham Mena

Dr. Barbara Wisser (née Paul)

Engelbert Redel

Dr. Tobias Scharmann

Dr. Savas Temizdemir

Lars Uehlin

Jana Vieth

Christian Vollmer

Dr. Biao Wu

Dr. He-Ping Wu (AvH)

Dr. Xiao-Juan Yang

Dr. Cungen Zhang (AvH)