Compressible Flow - TME085 - Lecture 8

Post on 29-Apr-2022

5 views 0 download

Transcript of Compressible Flow - TME085 - Lecture 8

Compressible Flow - TME085

Lecture 8

Niklas Andersson

Chalmers University of Technology

Department of Mechanics and Maritime Sciences

Division of Fluid Mechanics

Gothenburg, Sweden

niklas.andersson@chalmers.se

Chapter 5 - Quasi-One-Dimensional Flow

Overview

Compressible flow

Basic

Concepts

Com-

pressibility

flow

regimes

speed of

sound

Thermo-

dynamics

thermally

perfect

gas

calorically

perfect

gas

entropy1:st and

2:nd law

High tem-

perature

effects

molecular

motioninternal

energy

Boltzmann

distribution

equilibrium

gas

CFDSpatial

dis-

cretization

Numerical

schemes

Time

integration

Shock

handling

Boundary

conditions

PDE:s

traveling

waves

method

of char-

acteristics

finite

non-linear

waves

acoustic

waves

shock

reflection

moving

shocks

governing

equationsCrocco’s

equation

entropy

equation

substantial

derivativenoncon-

servation

form

conser-

vation

form

Conservation

laws

integral form

Quasi

1D Flowdiffusers

nozzles

governing

equations

2D Flow

shock

expansion

theory

expansion

fansshock

reflection

oblique

shocks

1D Flow

friction

heat

addition

normal

shocks

isentropic

flow

governing

equationsenergy

mo-

mentumcontinuity

Learning Outcomes

4 Present at least two different formulations of the governing equations for

compressible flows and explain what basic conservation principles they are

based on

6 Define the special cases of calorically perfect gas, thermally perfect gas and real

gas and explain the implication of each of these special cases

7 Explain why entropy is important for flow discontinuities

8 Derive (marked) and apply (all) of the presented mathematical formulae forclassical gas dynamics

a 1D isentropic flow*

b normal shocks*

i detached blunt body shocks, nozzle flows

9 Solve engineering problems involving the above-mentioned phenomena (8a-8k)

what does quasi-1D mean? either the flow is 1D or not, or?

Niklas Andersson - Chalmers 4 / 52

Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations

Niklas Andersson - Chalmers 5 / 52

Nozzle Flow with Varying Pressure Ratio

xAt

po pe

A(x) area function

At min{A(x)}po inlet total pressure

pe outlet static pressure

(ambient pressure)

po/pe pressure ratio

Niklas Andersson - Chalmers 6 / 52

Nozzle Flow with Varying Pressure Ratio

x

M

1

throat

increasing po/pe

supersonic branch

subsonic branch

critical po/pe

For critical po/pe, a jump to supersonic solution will occur

Niklas Andersson - Chalmers 7 / 52

Nozzle Flow with Varying Pressure Ratio

x

p/po

throat

1

p∗

po=

(2

γ + 1

) γγ−1 increasing po/pe

supersonic branch

subsonic branch

critical po/pe

As the flow jumps to the supersonic branch downstream of the throat, a normal

shock will appear in order to match the ambient pressure at the nozzle exit

Niklas Andersson - Chalmers 8 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio

throat

throat

x

M

1

x

p/po

p∗/po

1

pe/po

m/mchoked

1

1

00

Niklas Andersson - Chalmers 9 / 52

Nozzle Flow with Varying Pressure Ratio (Summary)

(po/pe) < (po/pe)crI the flow remains entirely subsonicI the mass flow depends on pe, i.e. the flow is not chokedI no shock is formed, therefore the flow is isentropic throughout the nozzle

(po/pe) = (po/pe)crI the flow just achieves M = 1 at the throatI the flow will then suddenly flip to the supersonic solution downstream of the throat,

for an infinitesimally small increase in (po/pe)

(po/pe) > (po/pe)crI the flow is choked (fixed mass flow), i.e. it does not depend on pe

I a normal shock will appear downstream of the throat, with strength and position

depending on (po/pe)

Niklas Andersson - Chalmers 10 / 52

Nozzle Flow with Varying Pressure Ratio

x

p/po

throat nozzle exit

1

p∗

po=

(2

γ + 1

) γγ−1

critical po/pe

supercritical po/peshock strength

po/pe

Niklas Andersson - Chalmers 11 / 52

Nozzle Flow with Varying Pressure Ratio

Effects of changing the pressure ratio (po/pe) (where pe is the back pressure and pois the total pressure at the nozzle inlet)

I critical value: po/pe = (po/pe)cI nozzle flow reaches M = 1 at throat, flow becomes choked

I supercritical value: po/pe = (po/pe)scI nozzle flow is supersonic from throat to exit, without any interior normal shock -

isentropic flow

I normal shock at exit: (po/pe) = (po/pe)ne < (po/pe)scI normal shock is still present but is located just at exit - isentropic flow inside nozzle

Niklas Andersson - Chalmers 12 / 52

Nozzle Flow with Varying Pressure Ratio

Normal shock at exit

x

p/po

throat nozzle exit

1 (po/pe)c

(po/pe)sc

(po/pe)ne

Niklas Andersson - Chalmers 13 / 52

Nozzle Flow with Varying Pressure Ratio

normal shockpo/pe = (po/pe)nenormal shock at nozzle exit

oblique shock(po/pe)ne < po/pe < (po/pe)scoverexpanded nozzle flow

pressure matchedpo/pe = (po/pe)scpressure matched nozzle flow

expansion fanpo/pe > (po/pe)scunderexpanded nozzle flow

Niklas Andersson - Chalmers 14 / 52

Nozzle Flow with Varying Pressure Ratio

Quasi-one-dimensional theory

I When the interior normal shock is ”pushed out” through the exit (by increasing

(po/pe), i.e. lowering the back pressure), it disappears completely.I The flow through the nozzle is then shock free (and thus also isentropic since we

neglect viscosity).

Three-dimensional nozzle flow

I When the interior normal shock is ”pushed out” through the exit (by increasing

(po/pe)), an oblique shock is formed outside of the nozzle exit.I For the exact supercritical value of (po/pe) this oblique shock disappears.I For (po/pe) above the supercritical value an expansion fan is formed at the nozzle

exit.

Niklas Andersson - Chalmers 15 / 52

Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations

Niklas Andersson - Chalmers 16 / 52

Chapter 5.6

Wave Reflection From a Free

Boundary

Niklas Andersson - Chalmers 17 / 52

Free-Boundary Reflection

Free boundary - shear layer, interface between different fluids, etc

Niklas Andersson - Chalmers 18 / 52

Free-Boundary Reflection - Shock Reflection

free boundary (p∞)

incident shock

reflected expansion

I No jump in pressure at the free boundary possible

I Incident shock reflects as expansion waves at the free boundary

I Reflection results in net turning of the flow

Niklas Andersson - Chalmers 19 / 52

Free-Boundary Reflection - Expansion Wave Reflection

free boundary (p∞)

incident expansion wave reflected shock

I No jump in pressure at the free boundary possible

I Incident expansion waves reflects as compression waves at the free boundary

I Finite compression waves coalesces into a shock

I Reflection results in net turning of the flow

Niklas Andersson - Chalmers 20 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

overexpanded nozzle flow

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

shock reflection at jet centerline

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

shock reflection at free boundary

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

expansion wave reflection at jet centerline

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

expansion wave reflection at free boundary

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

repeated shock/expansion system

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

free boundary

free boundary

shock diamonds

Niklas Andersson - Chalmers 21 / 52

Free-Boundary Reflection - System of Reflections

oblique shock

normal shock

oblique shock

overexpanded jet

Niklas Andersson - Chalmers 22 / 52

Free-Boundary Reflection - Summary

Solid-wall reflection

Compression waves reflects as compression waves

Expansion waves reflects as expansion waves

Free-boundary reflection

Compression waves reflects as expansion waves

Expansion waves reflects as compression waves

Niklas Andersson - Chalmers 23 / 52

Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations

Niklas Andersson - Chalmers 24 / 52

Chapter 5.5

Diffusers

Niklas Andersson - Chalmers 25 / 52

Supersonic Wind Tunnel

po

M > 1

test section

(open)

pe = pamb

po/pe = (po/pe)sc

M = 3.0 in test section ⇒ po/pe = 36.7 !!!

wind tunnel with supersonic test section

open test section

Niklas Andersson - Chalmers 26 / 52

Supersonic Wind Tunnel

po

M > 1

test section

(closed)

peM < 1

pamb

normal shock

po/pamb = (po/pe)(pe/pamb) < (po/pe)sc

M = 3.0 in test section ⇒po/pamb = 36.7/10.33 = 3.55

wind tunnel with supersonic test section

enclosed test section, normal shock at exit

Niklas Andersson - Chalmers 26 / 52

Supersonic Wind Tunnel

po

M > 1

test section

(closed)

peM < 1

p2

(po2 = pamb

)

normal shock

po/pamb = (po/pe)(pe/p2)(p2/po2 )

M = 3.0 in test section ⇒po/pamb = 36.7/10.33/1.17 = 3.04

Note! this corresponds exactly to total pressure

loss across normal shock

wind tunnel with supersonic test section

add subsonic diffuser after normal shock

Niklas Andersson - Chalmers 26 / 52

Supersonic Wind Tunnel

po

M > 1

test section

(closed)

pe

normal shock

oblique shocks

M < 1

p2

(po2 = pamb

)well-designed supersonic + subsonic diffuser ⇒

1. decreased total pressure loss

2. decreased po and power to drive wind tunnel

wind tunnel with supersonic test section

add supersonic diffuser before normal shock

Niklas Andersson - Chalmers 26 / 52

Supersonic Wind Tunnel

Main problems:

1. Design is extremely difficult due to complex 3D flow in diffuser

I viscous effectsI oblique shocksI separations

2. Starting requirements: second throat must be significantly larger than first throat

solution:

I variable geometry diffuserI second throat larger during startup procedureI decreased second throat to optimum value after flow is established

Niklas Andersson - Chalmers 27 / 52

Supersonic Wind Tunnel

pressureloss

throat area (second throat)optimum

startconditions

Niklas Andersson - Chalmers 28 / 52

Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations

Niklas Andersson - Chalmers 29 / 52

Quasi-One-Dimensional Euler

Equations

Niklas Andersson - Chalmers 30 / 52

Quasi-One-Dimensional Euler Equations

Example: choked flow through a convergent-divergent nozzle

x

A(x)

Assumptions: inviscid, Q = Q(x, t)

Niklas Andersson - Chalmers 31 / 52

Quasi-One-Dimensional Euler Equations

A(x)∂

∂tQ+

∂x[A(x)E] = A′(x)H

where A(x) is the cross section area and

Q =

ρρuρeo

, E(Q) =

ρu

ρu2 + p

ρhou

, H(Q) =

0p0

Niklas Andersson - Chalmers 32 / 52

Numerical Approach

I Finite-Volume Method

I Method of lines, three-stage Runge-Kutta time stepping

I 3rd-order characteristic upwinding scheme

I Subsonic inflow boundary condition at min(x)

I To, po given

I Subsonic outflow boundary condition at max(x)

I p given

Niklas Andersson - Chalmers 33 / 52

Finite-Volume Spatial Discretization

xcell j

xj− 3

2xj− 1

2xj+1

2xj+3

2

(∆xj = x

j+12

− xj− 1

2

)

Integration over cell j gives:

1

2

[A(xj− 1

2) + A(xj+ 1

2)]∆xj

d

dtQj+[

A(xj+ 12)Ej+ 1

2− A(xj− 1

2)Ej− 1

2

]=[

A(xj+ 12)− A(xj− 1

2)]Hj

Niklas Andersson - Chalmers 34 / 52

Finite-Volume Spatial Discretization

Qj =

ˆ xj+1

2

xj− 1

2

QA(x)dx

/ˆ xj+1

2

xj− 1

2

A(x)dx

Ej+ 12≈ E

(Q(xj+ 1

2

))

Hj ≈

ˆ xj+1

2

xj− 1

2

HA′(x)dx

/ˆ xj+1

2

xj− 1

2

A′(x)dx

Niklas Andersson - Chalmers 35 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

x

r

Nozzle geometry

Niklas Andersson - Chalmers 36 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 1.18 [bar]

po/pe 1.02

m 81.61 [kg/s]

Mmax 0.35

Niklas Andersson - Chalmers 37 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 1.16 [bar]

po/pe 1.03

m 106.27 [kg/s]

Mmax 0.49

Niklas Andersson - Chalmers 38 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 1.14 [bar]

po/pe 1.05

m 131.45 [kg/s]

Mmax 0.69

Niklas Andersson - Chalmers 39 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 1.13 [bar]

po/pe 1.06

m 144.88 [kg/s]

Mmax 0.93

Niklas Andersson - Chalmers 40 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 1.10 [bar]

po/pe 1.09

m 145.62 [kg/s]

Mmax 1.31

Niklas Andersson - Chalmers 41 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 1.00 [bar]

po/pe 1.20

m 145.6 [kg/s]

Mmax 1.58

Niklas Andersson - Chalmers 42 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 0.90 [bar]

po/pe 1.33

m 145.6 [kg/s]

Mmax 1.77

Niklas Andersson - Chalmers 43 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 0.80 [bar]

po/pe 1.50

m 145.6 [kg/s]

Mmax 1.94

Niklas Andersson - Chalmers 44 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 0.70 [bar]

po/pe 1.71

m 145.6 [kg/s]

Mmax 2.10

Niklas Andersson - Chalmers 45 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 0.60 [bar]

po/pe 2.00

m 145.6 [kg/s]

Mmax 2.24

Niklas Andersson - Chalmers 46 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

x

M

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

x

p/po

1 1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

140

po/pe

m

po 1.20 [bar]

pe 0.50 [bar]

po/pe 11.8

m 145.6 [kg/s]

Mmax 2.26

Niklas Andersson - Chalmers 47 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 3

1.14

1.16

1.18

1.2

·105

x

po

po 1.20 [bar]

pe 1.10 [bar]

po/pe 1.09

m 145.62 [kg/s]

Mmax 1.31

Niklas Andersson - Chalmers 48 / 52

Nozzle Simulation - Back Pressure Sweep

0 0.5 1 1.5 2 2.5 3

2.97

2.98

2.99

3

3.01

3.02·105

x

ho

po 1.20 [bar]

pe 1.10 [bar]

po/pe 1.09

m 145.62 [kg/s]

Mmax 1.31

Niklas Andersson - Chalmers 49 / 52

Modern Compressible Flow

Niklas Andersson - Chalmers 50 / 52

Roadmap - Quasi-One-Dimensional Flow

Basic concepts

Governing equations

Area-velocity relation

Nozzles

Diffusers

Numerical simulation

Free boundary reflection

Nozzle pressure ratio

Nozzle relations

Niklas Andersson - Chalmers 51 / 52