Composite materials – Introduction

Post on 28-Jan-2022

16 views 0 download

Transcript of Composite materials – Introduction

Composite materials – Introduction

Definition: any combination of two or more different materials at the macroscopic level.

OR

Two inherently different materials that when combined together produce a material with properties that exceed the constituent materials.� Reinforcement phase (e.g., Fibers)

� Binder phase (e.g., compliant matrix)

Advantages� High strength and stiffness

� Low weight ratio

� Material can be designed in addition to the structure

د��ر ��ن ��دوس، دا���ه ����ن

Applications

� Straw in clay construction by Egyptians

� Aerospace industry

� Sporting goods

� Automotive

� Construction

د��ر ��ن ��دوس، دا���ه ����ن

Types of Composites

Matrix

phase/Reinforc

ement Phase

Metal Ceramic Polymer

Metal Powder metallurgy

parts – combining

immiscible metals

Cermets (ceramic-

metal composite)Brake pads

Ceramic Cermets, TiC, TiCN

Cemented carbides –

used in tools

Fiber-reinforced

metals

SiC reinforced

Al2O3

Tool materials

Fiberglass

Polymer Kevlar fibers in an

epoxy matrix

Elemental

(Carbon,

Boron, etc.)

Fiber reinforced

metals

Auto parts

aerospace

Rubber with

carbon (tires)

Boron, Carbon

reinforced plastics

MMC’s CMC’s PMC’sMetal Matrix Composites Ceramic Matrix Comp’s. Polymer Matrix Comp’s

د��ر ��ن ��دوس، دا���ه ����ن

Costs of composite manufacture

Material costs -- higher for composites� Constituent materials (e.g., fibers and resin)

� Processing costs -- embedding fibers in matrix � not required for metals Carbon fibers order of magnitude

higher than aluminum

Design costs -- lower for composites� Can reduce the number of parts in a complex

assembly by designing the material in combination with the structure

Increased performance must justify higher material costs

د��ر ��ن ��دوس، دا���ه ����ن

Types of Composite Materials

There are five basic types of composite materials: Fiber, particle, flake, laminar or layered and filledcomposites.

د��ر ��ن ��دوس، دا���ه ����ن

A. Fiber Composites

In fiber composites, the fibers reinforce along the line oftheir length. Reinforcement may be mainly 1-D, 2-D or 3-D.Figure shows the three basic types of fiber orientation.

1-D gives maximum strength in one direction.

2-D gives strength in two directions.

Isotropic gives strength equally in all directions.

د��ر ��ن ��دوس، دا���ه ����ن

Composite strength depends on following factors:

Inherent fiber strength, Fiber length, Number of flaws

Fiber shape

The bonding of the fiber (equally stress distribution)

Voids

Moisture (coupling agents)

د��ر ��ن ��دوس، دا���ه ����ن

B. Particle Composites

Particles usually reinforce a composite equally in all directions(called isotropic). Plastics, cermets and metals are examples ofparticles.

Particles used to strengthen a matrix do not do so in the same way as fibers. For one thing, particles are not directional like fibers. Spread at random through out a matrix, particles tend to reinforce in all directions equally.

� Cermets(1) Oxide–Based cermets

(e.g. Combination of Al2O3 with Cr)(2) Carbide–Based Cermets

(e.g. Tungsten–carbide, titanium–carbide)� Metal–plastic particle composites(e.g. Aluminum, iron & steel, copper particles) � Metal–in–metal Particle Composites and

Dispersion Hardened Alloys(e.g. Ceramic–oxide particles) ه ����ن��د��ر ��ن ��دوس، دا�

C. Flake Composites - 1

Flakes, because of their shape, usuallyreinforce in 2-D. Two common flakematerials are glass and mica. (Alsoaluminum is used as metal flakes)

د��ر ��ن ��دوس، دا���ه ����ن

C. Flake Composites -2

A flake composite consists of thin, flat flakesheld together by a binder or placed in amatrix. Almost all flake composite matrixesare plastic resins. The most important flakematerials are:

1. Aluminum

2. Mica

3. Glass

د��ر ��ن ��دوس، دا���ه ����ن

D. Laminar Composites - 1

Laminar composites involve two or more

layers of the same or different materials. Thelayers can be arranged in different directionsto give strength where needed. Speedboathulls are among the very many products of

this kind.

د��ر ��ن ��دوس، دا���ه ����ن

D. Laminar Composites - 3

We can divide laminar composites into three basic types:

Unreinforced–layer composites

(1) All–Metal

(a) Plated and coated metals (electrogalvanized steel – steel plated with zinc)

(b) Clad metals (aluminum–clad, copper–clad)

(c) Multilayer metal laminates (tungsten, beryllium)

(2) Metal–Nonmetal (metal with plastic, rubber, etc.)

(3) Nonmetal (glass–plastic laminates, etc.)

Reinforced–layer composites (laminae and laminates)

Combined composites (reinforced–plastic laminates well bonded with steel, aluminum, copper, rubber, gold, etc.) ه ����ن��د��ر ��ن ��دوس، دا�

D. Laminar Composites - 4

A lamina (laminae) is anyarrangement of unidirectionalor woven fibers in a matrix.Usually this arrangement isflat, although it may becurved, as in a shell.

A laminate is a stack oflamina arranged with theirmain reinforcement in at leasttwo different directions.

د��ر ��ن ��دوس، دا���ه ����ن

E. Filled Composites

There are two types of filled composites. Inone, filler materials are added to a normalcomposite result in strengthening thecomposite and reducing weight. The secondtype of filled composite consists of a skeletal3-D matrix holding a second material. Themost widely used composites of this kind aresandwich structures and honeycombs.

د��ر ��ن ��دوس، دا���ه ����ن

F. Combined Composites

It is possible to combineseveral different materialsinto a single composite. It isalso possible to combineseveral different compositesinto a single product. A goodexample is a modern ski.(combination of wood asnatural fiber, and layers aslaminar composites)

د��ر ��ن ��دوس، دا���ه ����ن

Forms of Reinforcement Phase

Fibers � cross-section can be circular, square or hexagonal

� Diameters --> 0.0001” - 0.005 “

� Lengths --> L/D ratio� 100 -- for chopped fiber

� much longer for continuous fiber

Particulate� small particles that impede dislocation movement

(in metal composites) and strengthens the matrix

� For sizes > 1 µm, strength of particle is involves in load sharing with matrix

Flakes� flat platelet form ه ����ن��د��ر ��ن ��دوس، دا�

Matrix Materials

Functions of the matrix� Transmit force between fibers� arrest cracks from spreading between fibers

� do not carry most of the load

� hold fibers in proper orientation� protect fibers from environment

� mechanical forces can cause cracks that allow environment to affect fibers

Demands on matrix � Interlaminar shear strength� Toughness� Moisture/environmental resistance� Temperature properties� Cost

د��ر ��ن ��دوس، دا���ه ����ن

Matrices - Polymeric

Thermosets

� cure by chemical reaction

� Irreversible

� Examples

� Polyester, vinylester

� Most common, lower cost, solvent resistance

� Epoxy resins

� Superior performance, relatively costly

د��ر ��ن ��دوس، دا���ه ����ن

Polyester

Polyesters have good mechanical properties, electrical properties and chemical resistance. Polyesters are amenable to multiple fabrication techniques and are low cost.

Vinyl Esters

Vinyl Esters are similar to polyester in performance. Vinyl esters have increased resistance to corrosive environments as well as a high degree of moisture resistance.

Matrices - Thermosets

د��ر ��ن ��دوس، دا���ه ����ن

Epoxy

Epoxies have improved strength and stiffness properties over polyesters. Epoxies offer excellent corrosion resistance and resistance to solvents and alkalis. Cure cycles are usually longer than polyesters, however no by-products are produced.

Flexibility and improved performance is also achieved by the utilization of additives and fillers.

Matrices - Thermosets

د��ر ��ن ��دوس، دا���ه ����ن

Matrices - Thermoplastics

Formed by heating to elevated temperature at which softening occurs� Reversible reaction

� Can be reformed and/or repaired - not common

� Limited in temperature range to 150C

Examples� Polypropylene

� with nylon or glass

� can be injected-- inexpensive

� Soften layers of combined fiber and resin and place in a mold -- higher costs

د��ر ��ن ��دوس، دا���ه ����ن

Elastomers

An elastomer isa polymer with viscoelasticity (i.

e., both viscosity and elasticity) and has very

weak intermolecular forces, generally

low Young's modulus and high failure

strain compared with other materials.

د��ر ��ن ��دوس، دا���ه ����ن

Matrices - Others

Metal Matrix Composites - higher temperature

� e.g., Aluminum with boron or carbon fibers

Ceramic matrix materials - very high temperature

� Fiber is used to add toughness, not necessarily higher in strength and stiffness

د��ر ��ن ��دوس، دا���ه ����ن

MANUFACTURING PROCESSES OF COMPOSITES

Composite materials have succeeded remarkably in theirrelatively short history. But for continued growth,especially in structural uses, certain obstacles must beovercome. A major one is the tendency of designers torely on traditional materials such as steel and aluminumunless composites can be produced at lower cost.

Cost concerns have led to several changes in thecomposites industry. There is a general movementtoward the use of less expensive fibers. For example,graphite and aramid fibers have largely supplanted themore costly boron in advanced–fiber composites. Asimportant as savings on materials may be, the real keyto cutting composite costs lies in the area of processing.

د��ر ��ن ��دوس، دا���ه ����ن

��� ��� �� ��� ������ ���� ����� �� ������ ����� ��� ���� � �� �!"# �$��� � %&' "(�)*+ ���! "!����� ,�-� !����� � ... �/�0� !��!.

���� ����� � � �� (hand lay-up)

� �� ����� � ���

���� ��� �� ��� ������ ���� �����

د��ر ��ن ��دوس، دا���ه ����ن

���� ����� (Spray-up)

������ ����� ���

د��ر ��ن ��دوس، دا���ه ����ن

���� �������� �� �� (Bag Molding)

����! �� �� �������� ���

د��ر ��ن ��دوس، دا���ه ����ن

���� �� �"�� (Filament Winding)

�"�� �� ���

د��ر ��ن ��دوس، دا���ه ����ن

�#$ � ���% �& �!���� %� ����'� #��% ��( %)*�� �(+ ��(�"�� �� ��� & ,' -�

د��ر ��ن ��دوس، دا���ه ����ن

.��)+ %� �/��� ���0+��'� #��% ��( %)*�� ���"�� �� ��� &

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� %� � �� (Centrifugal)

� �� %� ��� ���

د��ر ��ن ��دوس، دا���ه ����ن

���� �1�� �)� (Pultrusion)

�)�� �1�� �)� ���

Continuous pultrusion is thecomposite counterpart ofmetal extrusion. Complexparts can be made.

د��ر ��ن ��دوس، دا���ه ����ن

2#���3�)� ���

Pulforming is similar to pultrusion in many ways.However, pultrusion is capable only of making straightproducts that have the same volume all along theirlengths. Pulformed products, on the other hand, can beeither straight or curved, with changing shapes andvolumes. A typical pulformed product is a curvedreinforced plastic car spring. (shown in figure.)

���� 2#���3�)� (Pulforming)

د��ر ��ن ��دوس، دا���ه ����ن

��������� �4��+ (Injection Molding)

�������� ����4��+

د��ر ��ن ��دوس، دا���ه ����ن

��������� ����! (Pressure Molding)

����! �������� ���

د��ر ��ن ��دوس، دا���ه ����ن

� Chopped glass fiber added to polyester resin mixture

��������� �� 536 Sheet Molding Compound (SMC)

د��ر ��ن ��دوس، دا���ه ����ن

��������� ��7�8 Rotation Molding

�! 1 � ��� �� 2 34�+ �4�5�� �� 6�7 �! ��-� 8���! "��� �� ,!�9�$� !�' ��.

1 �� � �� #�! �� 8��! 8: ,�'�� ���' �� � 1�; <5�= ��= ,��-� �� ,����

34�+ ��>0= ��. �! ���!� ,���� 34�+ �� 8��� #�? !�' �� � <���� @A� (��B

!�? ��. 34�+ ��&� �� �? ,�' �! 1 � ��� �! �&� @$� � 8��� �� @ ������ �� �� 8:

C��5 !��. �� 1 � ��� 8��� �� (�)*+ ,�D� �� �� !���. @ E� 1 � ��� >0�@ ��

��� E �? �� E��� 8: @$� �� �! ��� E �? �� E��� � �E�� �� �4�/= ���F� ����!

�� ,���� 34�+ ����& !E� � 2 G ��� 1/���� � �� � : ��. ��� �! ��� /4�+��

�F5�= 6���7� < ��� ��E�� 2>$ � 1/�$ ���� �'�� ��.

د��ر ��ن ��دوس، دا���ه ����ن

���� 9%)*�� #��% ��'! Metal Matrix Composites (MMCs)

��� :�� 1960 ��& 9!��� �)?@ %�! A�� �� B��'! C�� D��!� :�.� EF� ��� 9���4�

E���� 9�.� �G� G�� � �+���@ � H��I �)� ��.

�A�G5 �� �G�K�G� ���& B��'! � ��K L��+ �� �M & ��N� ��� D# �� ������ C�� .�H 9��

%�! A�� �&�- K� ���& �(KM ����& HO� � ���� 9��� .��&.

�P��&�#& �����& %� ���%�! A�� ��)� H��3 �� �� ��( %)*�� #��% ����'� ).#K�� R���� ���(

��( %)*�� �� #��% ��'! ��&�� .K��.K.

�P���� A�� �� T�- K� %�! A�� U&�V+ P�& %�! A�� � %�! #��% %� �������WK � �G��! ��.��& .

��� U&�V+ �G��! U&�V+ C�X Y���K� �+���@ Z�V� 9��.

����� D# �� ������ �K��% %� R���� H��3 �� �)� �� P.& K)� .��)7 �)& �� ����� :)[

R���� )�� \V� ]� �� �& #��%( ��G�� ��N� D# �� ������ �)$� ����. ��� D# �� ���% &P�

R���� � B��^ � #��% ..� .M ��G�� ��N� C� �+ �..$ �� 4V#� D# �� (Reaction Zone)

�)$� .��)7 9���. P��&�#& ��.�"�� ������ ..� .M �� PG�� 9�� C$)� D�� )7_�

�G�K�G� 9%)*�� �)�.

د��ر ��ن ��دوس، دا���ه ����ن

�A��#� 97�� ��( %)*�� #��% ��'! .�& & ��(+��3+ P�& �(KM � ���1���M ��'! $��) ����

$)+ �)�K. �)�/� �� ���1���M ��'! %� ���)� H��3 �� .## �� �� A��#� ���NK� �� 7��

�� K���� ..� .M �� ���@ �� �( %)*�� & P�#8 ���)� �%��K 9��K.

�P�#"�� �� �%��1���M ���)� 9($ ��N� T)�� � -� & 1���M !�X� .## �� ( %)*�� � ��)�

%��K 9��K.

�& �)W#� D��!� ��.K)��+ ���)� .�& & �( %)*�� !�X� �)� ��O� :�0+� #��% � %�! A�� ��

D��!� .��. P� ��)� �� �( %)*�� ����& ����� 9���� .# ��.

� �� �( %)*�� �& D��!� B��^ %�! A�� 9����� T��� ��'! D�� .&� �� . P��&�#& %��K & �K���!�

��� �)$� ���� 9����� T��� �� D��!� .#�� ��.

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� �� ��� ������ ���� �E�

��)+ ,' -� ��� ��� . #��% ��( %)*��

��'!

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� �&�^

���� Y` 7� a�4 �� Direct Incorporation

Stir Casting

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� -� ��� %� � �� Centrifugal Casting

�� %� ��� ��� -� ����

د��ر ��ن ��دوس، دا���ه ����ن

���� D��� ������ Spray-up

Spray

Forming

د��ر ��ن ��دوس، دا���ه ����ن

���� ���^)3K Infiltration

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� -� ��&) Squeeze Casting

��&) ��� -� ���د��ر ��ن ��دوس، دا���ه ����ن

���� �$�� In Situ

�! ��� ���� �� ��� ������ ���� �E� �� �� :� ���! !��� !��!.

1- � �� ������ �� �! 17 !��J�� %&' ���? ��.

2- � �� ������ �� �! 17 �� :� �4�� �� #�! !��� ���' ��.

�� 8���� 6�L� �?� M�� 1�5�$ ��� ������ 3O2Al/Al "�'�� 2 ��� 8: @$� �� N$�� � �4���

8O0�� �� �� P�Q� #����4: �����. 1 �� 3��� �� !��� 2 6��� �� 8��! P�Q� Al" �FA� �� P�Q� ��

%4! <�! 8O0�� �0�� ����5 �'.

�! ��4�7 �� �! 8��� !��J�� @ ������ � �� � : )3��� 2�&�� ( �! ���5�$E � ,!�� ����� β � α

)�94: � ���( ,������ �����5 �'. �! �5�� !���� �! 1 � @4�7 � �� ������ �� � T � � ������� ��

�� ��� %&' !�J � ���' ��. �! 1 � ��� 6�U�� �� � T ��+ @$� � �� E� � �;� � ��� M�B ��

�� ������ ,�F� @$�. 1�D�� �� :� VW�5� !��� �4�� ���!��� E� ����; @0�.

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� 9��$ .��$

���)K ��� � A��

1 � ��� ���>� �� X�9� � !�J � 6�U�� 1� ���� � ,���� @ �Y� �! @4�7 ���� @$�.

M�4� � (��X �! 1� ��� �+�� �E� ���+ ���? �� � @-� �Z�� "��! ��F � 8��� ��� � T �E� � M�4� ��

�/ �& %U�� ���' �� � �! 1 � @4�7 @ ������ ��5�$ !�' ��.

�� < �E � ��F � ��! ���� �E� #�� � M�4� �� �! �� !�? ��. T��)� �! 1 � ��� 1� M�4� � ����

<���� ���A� [� ��! ���.

.��)+ ���& ��)K ���9%)*��

د��ر ��ن ��دوس، دا���ه ����ن

���� �1�� � � ������

�! 1 � ��� M�4� � % � �E� ��*� 8��E�� !��� 8\���0�� ,�' � �� ����! 8: C��5 ���' ��. 1 ��

3��� ���� �E� � M�4� ,���� @ �Y� �� �� ��>� �� ����! 8\���0�� �� @ ������ �>�% ���' ��.

�)+ ���& �1�� � � ��� .�%� ��'! #��% 9%)*��

���)� ���� ��)�

د��ر ��ن ��دوس، دا���ه ����ن

���� �1�)�� � ��)� Powder Metallurgy

L@��� ��� �1�)�� � ��)�:

1- Y)'-� �%�� 2- ����! 3- ��� � #�� )��)$ ,+(

.#M�! ,' -� L@�����)� �1�)�� �

د��ر ��ن ��دوس، دا���ه ����ن

1- �� !��-� �! P�A��� �B�! ��J7 �� #�! !��� !����.

2- G ��� ��5���& �� �� #�! � ���� �� @$! � : ��.

3- (�EJ� P�X � ��? ��A � ��� !����.

4- <���� ���� � �� #�! �! �0 �Y� �� ��� ��? ��A � %4�� <��� ���! �� :� �� %+��7 ���$� .

5- 6���7� �4�� (�)*+ �� %&' ,�D� `��� !�' ��.

6- T��)� �FA� �� (��97 � �� %A�A� �! ����� �+�� ���� �� �� �� ��� ��� %L� 8\���0�� � F 8!�

"#�? !��� � ,�b ���: �� %+��7 ����$� ��.

7- ,����� � G ��� ,����� ����� �E� � �&���$ � �� 3$���� �'��.

8- 8�&�� �� (�)*+ e�E� � 1/�$ !��� !����.

9- 8�&�� �4�� ��� ��O��� ���� �E� �� �*Y� P�X T�� !��� !��!.

10- �! �0 �Y� �� ��? ��A � !��� �4�� )�!�� (�E� � �&���$( � (�EJ� ������? ��� !��!.

11- �?!�4: ����� !��! � E ���! !��� �! 8: @>0� �� ��? ��A � ���� @$�.

���� � ��� 9��.5� ��� �1�)�� � ��)�:

د��ر ��ن ��دوس، دا���ه ����ن

���� 9%)*�� #��% �G����� Ceramic Matrix Composites (CMCs)

�! 30 6�$ ��'Q? �& �� 1 ���� % T! �'� � �)$�� "�� ������ 8!�� ���Y= ��&���$ $����5� ��

2�� � �� ,���� @ �Y� )���F� � � (��9�� �� ����( �h� "���&0 � M�4� � � (��X ,!�� $�@.

�� 8���� 6�L� ���!����� #�$�� 3O2Al-α %4�� 3 �; V�0�� �����7 �T�� 8: !��-� ,�' @$�.

1 ������ SiC �� �� Q� i�' � @���Y� T�� �! ����� 8�$��0�� � �! �����! �T�� 1000 ���!

!��? ����$ �� 8���� 2 %��� @ �Y� ,���� ���� ����4: j�*� �'�� ��. �0�� `���4: �,�' @ �Y ��

(��X SiC ,����� ���!����� ������ ������ ��E�� ��� � !�5 k�U�5� ,!�! @$�.

(W&F� �� :� �4�� l��� < �E � ��: #�$�$ @�+ 1 � (T�U-� � �! �J�� @ !��-� �$�,!�9 �� 1 �

�&���$ ,�' @$�.

د��ر ��ن ��دوس، دا���ه ����ن

���� ��� �� ��� ������ ���� �&���$

���� ���^)3K Infiltration

-��� ���^)3K f�� Liquid Infiltration

- ��� ���^)3K �� %�! ��-& Chemical Vapor Infiltration

-��� ���^)3K L� (sol)

��-& %�! �� ���^)3K ���

د��ر ��ن ��دوس، دا���ه ����ن

���� �)���.�� � a�4 �� � .#M�! Lanxide TM

g)K ���� %� .#M�! ���^)3K f�� 9��.

د��ر ��ن ��دوس، دا���ه ����ن

a�4 �� �)���.�� � ��� F�+���

د��ر ��ن ��دوس، دا���ه ����ن

���� h�� A�� Hot Press

�� P� ��� ������ �& E���! B���@ ��K :��i� �)� �� � & �+���i B��'�i ��� LG�

)����!( � 2#� #�� ������ A�NK� ���� ��. ���! ������ �& B���@ ji�& A�!���k+

F� �`� B��^ � �� N� K ��N� ��� ��K������& ��& � ���� �� .@ F�)l+ �)� ��.

����:

1- A�NK� ������ h�� � 2#� #�� ji�& a �.� L@��� .��)+ � a ��+ �+��& �KK)

�)� ��.

2- ��)+ �� %� �7�& L��)i H.#��8 ���i ��WK 9��� �& �� ���! � ������ ��)�/� $.��

.# �� H��3 �� �)�K.

3- ��G�� �.��� & ��� 9�� &�/��� ��& �)$� ����.

د��ر ��ن ��دوس، دا���ه ����ن

A�� h�� ���

د��ر ��ن ��دوس، دا���ه ����ن

���� h�� F�+� ����� A�� Hot Isostatic pressing (HIP)

�� h�� F�+� ����� A�� %� ����� L�5+ ���� ��& �� ���� H��3 �� �)� �� � �� 4@94�

P� ��� P� (& H�� ���& �.��� & �+�/V� �& ��K�� ��& � :� # ���M H%�.K� �K� 9��.

A�� �K�$ �� h�� ���

د��ر ��ن ��دوس، دا���ه ����ن

���� � #� ���� @� �)7 H.K�� D�� Self Propagation High-Temprature Synthesis

P� ��� 9($ �(+ E�(G����� B��� �+ P�& E��'! ��� :)'5� .��$ � ��( %)*�� �%#�

�G����� ��)� H��3 �� ���� ���� ��. P� ��� A)�)� & SHS .��& ��.

�� P� ��� %� �+���@ �� �m� ��� D# �� �%���� P�&�� ���$� H.#�� L�G�+ .��)+ ��E�)�

���& a �� � ��� � 2#� #�� B�/V� H��3 �� �)� ��. P� �� D# �� ����& f�� H�)& �

C'I� �� �K��% � � %� 1 �K�m A�NK� �)� ��.

�)7 ���� @� � #� ���H.K�� D��

د��ر ��ن ��دوس، دا���ه ����ن

H.K�� D�� �)7 ���� @� � #� ���

د��ر ��ن ��دوس، دا���ه ����ن