Comparative Ecology of

Post on 28-Feb-2022

3 views 0 download

Transcript of Comparative Ecology of

Comparative Ecology of Nuclear Waste Ponds and Streams on the Hanford Site

Richard M. Emery M. Colleen McShane

October 1978

Prepared for the U.S. Department of Energy under Contract No. EY-76-C-06-1830

Pacific Northwest Laboratory Richland, Washington 99352

ABSTRACT

L imno log i ca l and r a d i o l o g i c a l parameters were i n v e s t i g a t e d i n ponds and streams on the Hanford S i t e t o develop comprehensive r a d i o e c o l o g i c a l p r o f i l e s . A l l b u t one system rece i ves l ow - l eve l aqueous rad-wastes f rom nuc lear f a c i l i t i e s . The remain ing system i s a pond formed by t h e s u r f a c i n g o f groundwater and con ta i ns r a d i o a c t i v i t y as a r e s u l t o f evapo ra t i ve concen t ra t i on o f n a t u r a l l y o c c u r r i n g nuc l ides . Attempts were made t o determine i f amounts o f r a d i o a c t i v i t y p resen t i n each aqua t i c system c o u l d be r e l a t e d t o e c o l o g i c a l v a r i a t i o n occu r r i ng among them. Maximum dose f rom t h e sediments a t t he water i n t e r f a c e and n u c l i d e concen t ra t i ons i n t h e water a re used t o d i f f e r e n t i a t e these systems r a d i o l o g i c a l l y . Whi le Hanford ponds and streams can be grouped i n t o t h r e e ca tago r i es o f n u c l i d e content , o n l y one system (100-N t r ench ) has dose r a t e s exceeding 1 R/wk. However, maximum a concen t ra t i ons i n Z-19 d i t c h water and maximum B - Y concen t ra t i ons i n 100-N t r ench water bo th exceeded l o 4 pCi/R.

These aqua t i c environments suppor t popu la t i ons o f commonly o c c u r r i n g algae, macrophytes, i n ve r t eb ra tes , and i n some cases, f i s h . A l though t h e v a r i e t y i n a l g a l popu la t i ons i s reduced i n 100-N t r ench and Z-19 d i t c h , v a r i e t y i n o the r types o f b i o t a a re no t apparen t l y assoc ia ted w i t h amounts o f r a d i o a c t i v i t y . Community s t r u c t u r e s i n these systems appear t o be as d i v e r s e as those i n t h e Columbia R i ve r b u t l ess d i ve r se than i n some o f f s i t e - r e f e r e n c e streams. The p r o d u c t i v i t y o f p l a n t l i f e , i n v e r t e b r a t e s and f i s h i n these systems does no t appear t o be assoc ia ted w i t h t h e r e l a t i v e amounts o f nuc lear waste contaminat ion. Furthermore, t h e i r r a t e s o f p r o d u c t i v i t y resemble those measured i n aqua t i c environments no t assoc ia ted w i t h nuc lear a c t i v i t i e s . C o l l e c t i v e l y , these da ta p rov i de no conc lus i ve evidence t h a t t he nuc lear wastes d ischarged i n t o Hanford ponds and streams have a f f e c t e d t he co lon i za t i on , d i v e r s i t y and a c t i v i t y o f b i o t a t h a t appear i n them.

Based on dose-e f fec ts data f rom the 1 i t e r a t u r e , o n l y 100-N t r ench con ta i ns enough r a d i o a c t i v i t y t o be p o t e n t i a l l y harmfu l t o some aqua t i c organisms and t e r r e s t r i a l communit ies. However, t h i s ecosystem does n o t g i v e c l e a r i n d i c a t i o n t h a t i t s b i o t a are i n f l uenced by t h i s r a d i a t i o n . The organisms t h a t e x i s t i n t h e r a d i o a c t i v e 100-N t r ench sediments a re common t o most sma l l e r f reshwate r environments and a l s o appear i n o t h e r Hanford aqua t i c systems. Hence, these nuc lear waste ponds and streams cannot be c l e a r l y d i f f e r e n t i a t e d between o f f s i t e systems o r among themselves on t h e b a s i s o f a comprehensive e c o l o g i c a l p r o f i l e .

ACKNOWLEDGMENT

Th i s s tudy was supported under DOE sponsorsh ip by t h e O f f i c e o f

Hea l t h and Envi ronmental Research. I t i s in tended t o p rov ide e c o l o g i c a l

base l i ne i n fo rma t i on f o r the i n t e r p r e t a t i o n o f data developed i n Rockwell

Hanford supported e c o l o g i c a l s t ud ies a t t h e 200-Area p la teau .

For t h e i r ass is tance and advice, we wish t o thank t he f o l l o w i n g :

B a t t e l le , P a c i f i c Northwest Labora to r ies

R. F. Fos te r

D. C. K l op fe r

M. G. LaR iv i e re

J. L. H e l b l i n g

D. H. McKenzie

T. M. Poston

K. R. P r i c e

R. G. Schreckhise

W. L. Templeton

0 . E. Vaughan

D. G. Watson

Rockwell Hanford Operat ions

( f o r m e r l y A t l a n t i c R i c h f i e l d Hanford Company)

L. E. Bruns

H. L. M a x f i e l d

Un i ted Nuclear Inc.

T. E. Dabrowski

M. J. Sula

CONTENTS

. . . . . . . . . . . . . . . . . . . . INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . RESULTS

. . . HISTORICAL AND ECOLOGICAL DESCRIPTIONS OF PONDS AND STREAMS

. . . . . . . . . . . . . . . . . G a b l e p o n d

. . . . . . . . . . . . . . . . . . W e s t P o n d

2 - 1 9 D i t c h . . . . . . . . . . . . . . . .

. . . . . . RADIOLOGICAL CHARACTERISTICS OF PONDS AND STREAMS

DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ECOLOGICAL VARIAT ION I N HANFORD SYSTEMS

EFFECTS OF I O N I Z I N G R A D I A T I O N OBSERVED I N O F F S I T E . . . . . . . . . . . . . . . . . . ENVIRONMENTS

. . . . . . . . . . . . . . . . . SUMMARY AND CONCLUSIONS

REFERENCES . . . . . . . . . . . . . . . . . . . . . APPENDIX A

METHODS AND MATERIALS

. . . . . . . . . . . . . . P h y s i c a l P a r a m e t e r s A -1

. . . . . . . . . . . . . . C h e m i c a l P a r a m e t e r s A - 1

. . . . . . . . . . . . . . B i o l o g i c a l P a r a m e t e r s A-2

. . . . . . . . . . . . . R a d i o l o g i c a l P a r a m e t e r s A-4

APPENDIX B

DETAILED HISTORICAL AN ECOLOGICAL DESCRIPTIONS OF HANFORD PONDS AND STREAMS

Wes t P o n d . . . . . . . . . . . . . . . . . . 8 - 2

. . . . . . . . . . . B.Pond. 0-3 a n d A-29 D i t c h e s B-4

. . . . . . . . . . . . . . U-Pond and Z-19 D i t c h B-7

. . . . . . . . . . . . . . . . . 100-N T r e n c h B-11

FIGURES

F igu re 1. Map o f t h e Hanford S i t e showing t h e l o c a t i o n of t he s tudy systems. . . . . . . . . . . . . . . . 3

F igu re 2. Gable Pond and West Pond showing dimensional i n f o r m a t i o n and l i s t s o f r ad ionuc l i des appearing i n them. . 4

F igu re 3. The B-Pond system showing l i s t s o f assoc ia ted r a d i o - . . . . . . . . . nuc l i des and dimensional i n f o rma t i on 11

F igu re 4. The U-Pond system showing dimension1 i n f o r m a t i o n and l i s t o f r ad ionuc l i des appearing i n i t . . . . . . . . . 14

F igu re 5. The 100-N t rench shown w i t h dimensional i n f o rma t i on and l i s t s o f r ad ionuc l i des appearing i n i t . 15

F igu re 6. A m a t r i x o f maximum n u c l i d e concent ra t ions i n water vs. maximum dose r a t e s f rom sediments, used t o suggest a r e l a t i v e grouping o f t he s tudy s i t e s on t he bas i s o f t h e i r r a d i o l o g i c a l cond i t i ons . . . . . . . . . . . . . . 18

F igu re 7. A comparison o f doses o f i o n i z i n g r a d i a t i o n a t t he sediment-water i n t e r f a c e o f Hanford aqua t i c systems w i t h doses observed t o cause minor t o in te rmed ia te damage i n aqua t i c organisms and t e r r e s t r i a l communities . 26

TABLES

Table 1. Physical and chemical characteristics of ponds on the HanfordSite. . . . . . . . . . . . . . . . . . 5

Table 2. Appearance of algae in ponds and streams on the Hanford Site . . . . . . . . . . . . . . . . . . . . 6

Table 3. Quantitative biological characteristics for ponds and . . . . . . . . . . . . streams on the Hanford Site. 7

Table 4. Dominant macrophytes observed i n ponds and streams on the Hanford Site. . . . . . . . . . . . . . 8

Table 5. Appearance of aquatic fauna in ponds and streams on the HanfordSite. . . . . . . . . . . . . . . . 9

Table 6. Physical and chemical characteristics for streams (ditches and trenches) on the Hanford Site. . . . . . . . . . 12

Table 7. Ranges of radiological characteristics for ponds and streams on the Hanford Site. . . . . . . . . . . . 17

COMPARATIVE ECOLOGY OF NUCLEAR WASTE PONDS AND

STREAMS ON THE HANFORD SITE

INTRODUCTION

Many aspects o f t h e nuc lea r i n d u s t r y assoc ia ted w i t h p l u ton ium

process ing and r e a c t o r ope ra t i ons r e q u i r e a cont inuous supply o f

f reshwate r . Much o f t h i s water r ece i ves o n l y l ow - l eve l con tamina t ion and

can be s a f e l y d ischarged i n t o open d i t c h e s and bas ins a t t h e f a c i l i t y

s i t e s . These wastewater d ischarges c r e a t e aqua t i c environments t h a t

f r e q u e n t l y suppor t d i v e r s e e c o l o g i c a l communit ies which adapt t o t h e o f t e n

unusual thermal, chemical and r a d i o l o g i c a l cond i t i ons . Such i s t h e case a t

Hanford, near Richland, Washington, where severa l l a r g e ponds and streams

a re ma in ta ined t o r e c e i v e waste water f rom reac to r , rep rocess ing and

l a b o r a t o r y opera t ions . These aqua t i c ecosystems p r o v i d e a un ique

o p p o r t u n i t y t o s tudy e c o l o g i c a l p r o f i l e s o c c u r r i n g i n t h e presence o f

rad-wastes, w i t h t h e i n t e n t o f i d e n t i f y i n g i r r e g u l a r p r o p e r t i e s i n t h e b i o t a

t h a t m igh t be assoc ia ted w i t h e l eva ted l e v e l s o f r a d i o a c t i v i t y .

The purpose o f t h i s work i s t o p rov i de a comprehensive d e s c r i p t i o n o f

each aqua t i c system us ing app rop r i a t e phys i ca l , chemical, b i o l o g i c a l and

r a d i o l o g i c a l parameters. The o v e r a l l o b j e c t i v e i s t o determine i f these

aqua t i c ecosystems g i v e i n d i c a t i o n s t h a t t h e i r r a d i o l o g i c a l c o n d i t i o n s

a f f e c t t h e b i o t a i n terms o f occurrence, d i v e r s i t y and p r o d u c t i v i t y . ( a )

( a ) I n t h e i n t e r e s t s o f enhancing c o n t i n u i t y and e f f i c i e n t comprehension f o r t h e reader, we w i l l depar t somewhat f rom t r a d i t i o n a l s c i e n t i f i c j ou rna l i sm. Th is i n v o l v e s p l a c i n g t h e METHODS AND MATERIALS s e c t i o n i n APPENDIX A and t h e d e t a i l e d s i t e d e s c r i p t i o n s i n APPENDIX B, r a t h e r than i nc l ude them i n t he main body o f t h e t e x t .

HISTORICAL AND ECOLOGICAL PROFILES OF PONDS AND STREAMS

Hanford Operat ions has created f o u r l a r g e ponds on t he 200-Area

p la teau. These a re U-Pond i n t h e 200-West Area, B-Pond l y i n g eas t o f t h e

200-East Area, and Gable and West Ponds i n t he 200-North Area (F igu re 1 ) .

Three o f t h e s tudy streams are assoc ia ted w i t h two o f these ponds. A-29 and

B-3 d i t c h e s c a r r y water t o B-Pond and Z-19 d i t c h d ischarges i n t o U-Pond. A

f o u r t h stream, 100-N trench, 1 i e s immediately nor theas t o f t h e N-reactor

s i t e near the Columbia R iver (F i gu re 1).

A l l o f these aquat i c systems have appeared i n t he Hanford area s ince

t h e beginn ing o f t h e Manhattan P r o j e c t i n 1943. The water supply f o r these

systems, except West Pond and 100-N trench, i s withdrawn f rom the Columbia

R i ve r near t h e B and D r e a c t o r s i t e s (F igu re 1). Th is supp ly serves t h e

process ing and waste hand l ing f a c i l i t i e s i n t he 200 Areas and i s used ma in l y

as c o o l i n g water. A f t e r pass ing through these f a c i l i t i e s , i t i s d ischarged

i n t o p ipes and d i t c h e s lead ing t o t h e ponds. A l l ponds except West Pond

rece i ve these f a c i l i t i e s ' e f f l u e n t s . West Pond i s a window i n the 'g round

water t a b l e and i s f ed f rom underground sources. It appeared i n t he

200-North Area when l a rge q u a n t i t i e s o f r i v e r water began reach ing t h e 200

Areas. R i ve r water i s withdrawn d i r e c t l y f rom the N-reactor s i t e (F igu re 1)

t o supply i t s opera t ions and some o f t h e e f f l u e n t s a re d ischarged i n t o 100-N

t rench.

Since t he e c o l o g i c a l assessment o f anf ford aquat i c systems has invo lved

a l a rge number o f s tudy s i t e s along w i t h numerous da ta f o r each s i t e , we

w i l l p rov ide here o n l y an overview o f the major d i s t i n g u i s h i n g

c h a r a c t e r i s t i c s . Th is w i l l i n vo l ve summarizing t h e p e r t i n e n t p r o p e r t i e s o f

each system t h a t are e s s e n t i a l f o r d e s c r i p t i v e and comparat ive purposes.

The reader may r e f e r t o Appendix B t o f i n d more d e t a i l e d d e s c r i p t i o n s from

which these s i m p l i f i e d p r o f i l e s were developed.

Gable Pond

Th i s pond was c rea ted i n the 200 Nor th Area i n 1957 t o r e c e i v e c o o l i n g water f rom t h e Purex P l a n t where r e a c t o r f u e l s are processed (F igu res 1 and 2 ) . I t con ta ins low- leve l q u a n t i t i e s of a c t i n i d e s and mixed f i s s i o n

HANFORD AREA M A P

0 1 2 3 4 5

FIGURE 1. Map o f t h e Hanford S i t e showing t h e l o c a t i o n o f t h e s tudy systems. Reactor s i t e s a r e l o c a t e d a long t h e Columbia R i v e r and a r e des igna ted b y l e t t e r . On ly t h e N - r e a c t o r i s c u r r e n t l y i n o p e r a t i o n .

GABLE POND ASSOCIATED R A D l O N U C L l DES

a - P-r 7 u 6 5 ~ n ' O b ~ u ~h

0 500 1 mo 0 - 1000

hlETERS

WEST POND

ASSOCIATED RADIONUCLIDES

NOT S P E C I F I C A L L Y CHARACTER1 ZED 0111 C O N T A I N 5 BOTH a AND 0 y E M l n l N G I S O T O P E S THAT EXCEED B A C K G R O U N D COb!CENTRATI ONS

Y A R D S 0 50 100 -

0 50 100 METERS

FIGURE 2 . Gable Pond and West Pond showing dimensional i n f o r m a t i o n and 1 i s t s o f rad ionuc l i des appear ing i n them.

produc ts ( F i g u r e 2 ) . I t i s t h e l a r g e s t o f t h e Hanford ponds and has a r e l a t i v e l y s low f l u s h i n g r a t e (Tab le 1) . Seston c o n c e n t r a t i o n s a r e r e l a t i v e l y low and sed imenta t ion r a t e s a r e moderate (Tab le 1). The a l g a l p o p u l a t i o n i s m a i n l y p e r i p h y t i c and shows moderate c o l o n i z a t i o n p ressure (Tables 2 and 3 ) . T h i s pond suppor ts t h e most p r o l i f i c p o p u l a t i o n s o f submerged and emergent macrophytes a t Hanford (Tab le 4 ) . I n v e r t e b r a t e s a r e r e l a t i v e l y d i v e r s e and abundant, and t h i s p o p u l a t i o n shows t h e h i g h e s t c o l o n i z a t i o n p ressure o f a l l s tudy ponds (Tables 3 and 5) . G o l d f i s h a l s o l i v e i n Gable Pond.

TABLE 1 . Phys ica l and chemical c h a r a c t e r i s t i c s o f ponds on t h e Hanford S i t e . Means a r e shown w i t h 95% con f idence v a l ues ( i .e. , mean + con f idence v a l ue = 95% conf idence i n t e r v a l about t h e mean).

2 Gable Pond B.-Pond U-Pond West Pond Surface area (m ) 287,300 1 5

[ac r e s] [71.0] t2!tj "r E] 7[';K1 3 Volume (m ) 431,000 233,200 22,700 31,100

[acre-f t ] % [350] [1901 [18.4] [25.1]

Mean depth (m) [f t l

Re ten t ion Time ( h r s ) 504 + 211 424 - + 183 37 + 4 - ( a )

Temperature Range ("C) 0-25.3 0-25 .O 0-28.4 0-25.5

I n s o l a t i o n Range (Langley ' s ) 20-253 20-253 20-253 20-253

Seston (mg/ i ) 14.5 + 10.9 12.2 + 17.4 24.0 - + 8.9 21.6 - + 9.6

Sedimentat ion Rate 2.43 - + 0.76 0.81 - + 0.51 2.24 - + 1.42 11.20 + 6.50 (mg/cm2 per day)

pH Range 7.8-8.7 7 .O-9.0 7.0-9.5 9.7-10.0

A l k a l i n i t y ( m g / i as CaC03) 58.4 - + 6.1 57.1 - + 4.8 95.2 + 6.5 9009 + 1924

Diss. O2 Range ( m g / i ) 7.9-12.7 8.1-13.8 9.0-13.00 8.0-13.8

Hardness ( m g / l as CaC03) 6 7 . 4 + 6 . 0 - 6 8 . ' 0 + 4 . 2 - 7 2 . 4 t 1 4 . 1 - 1 2 1 . 8 2 7 . 6

C o n d u c t i v i t y 1327 + 104 1251 + 170 1553 + 132 229,698 - + 42,292 (pmhos/cm @25 "C)

T o t a l NO3-NO2-N (mg/ i ) 0.18 + 0.07 3.65 + 1.33 0.28 - + 0.08 - T o t a l NH3-N ( m g / i ) 0.38 - + 0.10 1.04 + 0.51 0.45 - + 0.20 2.61 - + 0.40

Ortho PO4-P ( t ~ g / i ) 1.0 + 0.1 4.5 - + 4.2 57.8 - + 25.1 2050 + 180

T o t a l PO4-P ( p g / i ) 38.0 + 10.0 40.4 - + 10.0 123.0+ - 56.0 2160 - + 140

T o t a l S i02-Si ( m g / i ) 0.99 - + 0.22 1.53 - + 0.41 0.80 - + 0.43 0.23 - + 0.21

( a ) No data a v a i l a b l e

TABLE 2 . Appearance of algae in ponds and streams on the Hanford S i t e . The presence of a taxon i s indicated by a "+", notably large abundance by a "++", and no symbol indi- cates an absence.

D i v i s i o n Gable 0- U- West A-29 B-3 Z-19 100-N (Common Name) Fami 1 y Pond Pond Pond Pond D i t c h D i t c h D i t c h Trench

Cyanophyta Osci 11 a t o r i aceae (B l ue-green Chroococcaceae A1 gae) fios tocaceae

Chl orophyta (Green A1 gae) Desrnidiaceae

Palmel laceae Vol vocaceae Charac i aceae Phaco taceae Oocys taceae Scenedesmaceae Te t rasporaceae M ic rac t i n i aceae Coccomyxaceae Zygnema taceae C l adophoraceae Hydrodi ctyaceae Characeae

Eugl enophyta Eugl enaceae (Eugl eno id A1 gae)

Chrysophyta Ma1 1 omonadaceae (Go1 den-brown Ochromonadaceae Algae & Cosci nodi scaceae ++ Diatoms) Rhi zosol eniaceae

Tabe l l a r i aceae + D i a tomaceae t

Achnanthaceae t

Nav icu l aceae t

Gomphonenia taceae + Cylnbel 1 aceae t

Iii tzschiaceae t

S u r i r e l laceae t

F rag i 1 a r iaceae + Synuraceae

Pyr rophy ta Gymnodi n i aceae (D ino f lage l 1 a t e s ) G l enodin iaceae

Cryptophyceae Cryptomonadaceae (Cryptomonads)

aJ - + lu .r aJ > v , L L

lu aJ -0 c, L V) s 0 s.7 't a S a J a J l u z U I t

a aJ .u c -0 *r + s't

0 c S C L 0 0 1 U

lu XI-

.r u m. x 3\D I DU D O L C L ma, o a x a a U

I D C -

U N .- . E 'A 0 L Z N 0 , v

TABLE 4. Dominant macrophytes observed i n ponds and streams on t h e Hanford S i t e . The presence of a taxon i s i n d i c a t e d by a "+", no tab l y l a r g e abundance by a "++", and no symbol i nd i ca tes an absence.

Gable B- U- West A-29 6-3 Z-19 100-N Common Name Genus Pond Pond Pond Pond D i t c h D i t c h D i t c h Trench

Ho rse ta i 1 Equi setum t

Pondweed Potamogeton ++ t t +

Hornwort Cera tophy l lum ++

Water M i 1 f o i 1 M y r i o p h y l l urn ++

Duckweed Lemna -- t

C a t t a i l Typha t t tt t + + +t

Bul r ush Sci r pus t t t t t t + t t

Snlar tweed Pol ygonum t

Speedwell Veronica

Watercress Ror ippa t t

W i 1 d L e t t u c e Lac tuca + t

Wi l l ow Sal i x t

Cottonwood Popul us t t t t

TABLE 5. Appearance o f aqua t i c fauna i n ponds and streams on t h e Hanford S i t e . Presence o f a taxon i s i n d i c a t e d by a "+I1 , n o t a b l y l a r g e abundance o f a taxon by a "++" , and no symbol i n d i c a t e s an absence.

Gable B- U- West A-29 8-3 Z-19 100-N Common Taxon Pond Pond Pond Pond D i t c h D i t c h D i t c h Trench

F l a two rrn Leech

Duges i a H i rund inea

Segmented worm 01 i i o c h a e t a t t t tt t t t t

Wa t e r f 1 ea Daphnia tt t tt

Seed Shrimp 0s t racoda t

Scud Hya le l l a Wa t e r m i t e Hvdrocar i na May f l y ~ i e t i d a e D ragon f l y Aeschna Dragon L i b e l l u l a D ragon f l y Tramea Dragonf 1 y Erythernis D ragon f l y Anax Damsel f l y I schnura W a t e r s t r i d e r Ger r idae Backswirmier Notonec t idae Creeping Naucoridae Water Bug

Water Scorp ion Nepidae G i a n t Water Buc Belostomat idae Water Boatman Co r i x i dae C a d d i s f l y T r i cop te ra Predaceous D y t i sc idae

D i v i n g B e e t l e Water Scavenger Hydrophi 1 i dae

B e e t l e Crawl i ng Hal i p i d a e Water Bee t l e

B e e t l e Amph i zo i dae Beet1 e N o t e r i dae Beet1 e He1 od idae Midge Chi ronorni dae B lack F l y Simul i i d a e Shore F l y Ephydr i dae Aqua t i c Nymphul idae

Ca te rp i 11 e r Snai 1 Physa Snai 1 Lymnaea Snai 1 P lanorb idae G o l d f i s h Carass i us

West Pond

I n 1957, t h i s ground water window appeared i n a depress ion i n t h e 200 No r th Area (F i gu res 1 and 2 ) . Th i s r e l a t i v e l y smal l pond r e t a i n s i t s water long enough t o p e r m i t cons ide rab l y evapo ra t i ve concen t ra t i on o f s o l u b l e s a l t s , which has e l eva ted i t s i o n i c concen t ra t i ons (Tab le 1) . Th i s pond has n o t been used as a nuc lear waste f a c i l i t y , b u t does have d e t e c t a b l e l e v e l s o f some rad ionuc l i des . It has r e l a t i v e l y h i g h seston concen t ra t i ons i n a d d i t i o n t o the h i ghes t sed imentat ion r a t e s among ponds (Tab le 1 ) . The v a r i e t y o f a lgae i s r e l a t i v e l y broad, b u t t h e c o l o n i z a t i o n p ressure o f t h i s p o p u l a t i o n was t h e lowest among ponds (Tables 2 and 3 ) . It suppor ts l i m i t e d macrophyte and i n v e r t e b r a t e popu la t ions . I n d i c a t o r s o f t h e i n v e r t e b r a t e ' s v a r i e t y , d i v e r s i t y , and c o l o n i z a t i o n p ressure were t h e lowest among Hanford ponds (Tables 3 and 5 ) . No f i s h l i f e appears i n t h i s pond.

Th i s pond was c rea ted i n 1945 t o r e c e i v e c o o l i n g water f r om t h e 200-East Area encapsu la t ion f a c i l i t y v i a B-3 d i t c h (F i gu res 1 and 3 ) . I t a l s o r ece i ves c o o l i n g water and occas iona l chemical wastes f rom an a c i d f r a c t i o n a t o r v i a A-29 d i t c h . I t con ta i ns smal l amounts o f a c t i n i d e s and mixed f i s s i o n p roduc ts (F i gu re 3 ) . It f l u s h e s a t a moderate r a t e , and i t s seston concen t ra t i ons and sed imenta t ion r a t e s a re lowes t among Hanford ponds (Table 1). Whi le most water chemis t ry parameters a re s i m i l a r t o those o f r e g i o n a l aqua t i c environments, n i t r o g e n concen t ra t i ons a re s u b s t a n t i a l l y h i ghe r (Tab le 1) . The a l g a l p o p u l a t i o n i s ma in l y p e r i p h y t i c and shows t h e h i ghes t c o l o n i z a t i o n p ressure among ponds (Tables 2 and 3 ) . The macrophyt ic p o p u l a t i o n i s sparse (Tab le 4 ) . The i n v e r t e b r a t e p o p u l a t i o n shows moderate v a r i e t y , d i v e r s i t y , and c o l o n i z a t i o n p ressure (Tab le 2 and 5 ) , and t h e r e i s a smal l p o p u l a t i o n o f g o l d f i s h .

8-3 D i t c h

Th i s d i t c h was c rea ted i n 1945 and p a r t i a l l y r e r o u t e d i n 1973. I t t r a n s p o r t s t h e main water supp ly t o B-Pond (F i gu re 3 and Table 4 ) . It c a r r i e s o n l y c o o l i n g water and con ta i ns a smal l amount o f mixed f i s s i o n products . It has a s l i g h t l y e l eva ted temperature range and h i g h e r n i t r o g e n concen t ra t i ons than most r e g i o n a l aqua t i c environments (Tab le 6 ) . Th i s d i t c h suppor ts a r e l a t i v e l y l a r g e v a r i e t y o f algae, most o f which a re p e r i p h y t i c and c o l o n i z e more r a p i d l y than those o f o t h e r Hanford s tudy s i t e s (Tables 2 and 3 ) . The v a r i e t y o f macrophytes i s smal l , b u t t h e r e a re some dense s tands o f emergent vege ta t i on (Tab le 6 ) . The v a r i e t y o f i n v e r t e b r a t e 1 i f e appears t o be r e l a t i v e l y smal l , b u t g r e a t e s t among Hanford streams (Table 5 ) . Al though t he c o l o n i z a t i o n pressure o f t h e i n v e r t e b r a t e p o p u l a t i o n i s h i ghe r than a t o t h e r s t udy s i t e s ; t h e d i v e r s i t y i s q u i t e low (Tab le 3 ) . There i s a l s o a smal l g o l d f i s h popu la t i on .

B-POND

CATTAILS AND BULRUSHES

ASSOCIATED RADIONUCLI DES

137cs

14%e-pr

1 4 7 ~ m

1

B-3 AND A-29 DITCHES

ASSOCIATED RADIONUCLI DES LI - P -r 7 u w ~ r Y

23 7 NP 9 5 ~ r ~ b

''RU ?PU

l o 6 ~ u ~h

137cs

l M c e - p r

YARDS

METERS

FIGURE 3 . The B-Pond system showing l i s t s o f associated rad io - nucl ides and dimensional in fo rmat ion .

Length (m) [f t l

TABLE 6. Phys ica l and chemical c h a r a c t e r i s t i c s f o r streams ( d i t c h e s and t renches) on the Hanford S i t e . Means a r e shown w i t h 95% conf idence values (i. e., mean + c o n f i - dence va lue = 95% conf idence i n t e r v a l zbout tEe mean).

A-29 D i t c h 5-3 D i t c h Z-19 ~i t ~ h ( ~ ) 100-N Trench

Maximum depth (m) [ f t l

Flow Rate m3/min) 1.53 + 0.40 10.77 - + 4.45 0.65 + 0.08 26.6 t c f SI [0.9 0.21 [6.3 - + 2.61 [0.4 ? A 0.051 r 2 3 . 9 1

Temperature Range ( " c ) 10.5-24.6 13.4-27.0 10.0-25.5 18.0-37 .O

I n s o l a t i o n Range 20-253 20-253 20-253 20-253 (Lang ley ' s )

Seston (mg/L) 1.94 - + 1.26 2.23 - + 1.63 13.25 - + 5.07 ( c )

pH Range 6.5-7.6 ( b ) 7 . 4 ~ 8 . 1 6.9-8.0 7.5-8.0

A l k a l i n i t y 53.6 - + 4.5 55.2 - + 4.6 73.2 + 4.9 - 39.7 - + 6.8 (mg/L as CaC03)

Diss. O2 Range (mg/L) 7.8-11.2 7.8-10.5 8.0-12.1 1.8.0

Hardness (mg/k as CaC03) 63.8 + 3.0 68.2 - + 3.7 - 49.7 - + 7.0

C o n d u c t i v i t y 1260 - + 63 1433 A + 140 - 110 - + 21 (~mhos /cm @25 " c )

T o t a l NO3-NO2-N ( m g / ~ ) 0.19 - + 0.15 3.74 - + 1.28 0.30 + 0.36 - To ta l NH3-N (mg/k ) 0.67 - + 0.84 - 1.61 f 1.10 0.09 + 0.04 - Ortho pH4-P (pg /k ) 11.9 - + 10.2 9.8 - + 7.6 90.0 - + 49.7 - T o t a l PO4-P (pg /L ) 45.1 - + 9.0 48.2 + 10.8 105.0 + 54.0 - - -

To ta l S i02-Si (mg/L) 2.08 - + 0.42 2.01.+ 0.42 4.73 + 8.35 - - . -

( a ) Discharges i n t o Z-19 d i t c h were s u b s t a n t i a l l y reduced i n March 1976. (b ) Range may be broader on an i n te rm i t t e n t b a s i s . ( c ) No da ta a v a i l a b l e .

A-29 D i t c h

This d i t c h c a r r i e s chemical sewer wastes and c o o l i n g water i n t o 0-Pond (F igu re 3 ) . I t was formed i n 1955 t o r e c e i v e Purex l a b o r a t o r y wastes, b u t s ince 1972 o n l y c a r r i e s c o o l i n g water f rom an a c i d f r a c t i o n a t o r a long w i t h occas iona l pu lses o f waste chemicals i n c l u d i n g o i l s and s t r ong c a u s t i c s and cor ros ives . Despi te these discharges, r o u t i n e water sampl i n g d i d no t r evea l unusual chemical c o n d i t i o n s (Table 6 ) . It con ta ins ve ry sma l l q u a n t i t i e s o f mixed f i s s i o n products (F igu re 3 ) . The a l g a l popu la t i on i s ma in l y p e r i p h y t i c , showing moderate v a r i e t y , b u t t he c o l o n i z a t i o n pressure i s lowest among the Hanford s tudy s i t e s (Tables 2 and 3 ) . It supports severa l stands o f emergent macrophytes (Table 4 ) . The v a r i e t y , d i v e r s i t y , and c o l o n i z a t i o n pressure o f t he i nve r teb ra tes are q u i t e low (Tables 3 and 5), and t he re i s no f i s h l i f e present .

Th is pond was formed i n 1944 t o r e c e i v e l ow- l eve l wastes f rom p lu ton ium process ing and rec lamat ion f a c i l i t i e s , a uranium recovery p l a n t , and o t h e r suppo r t i ve l a b o r a t o r i e s i n the 200-West Area v i a a s e r i e s o f Z-d i tches (F igures 1 and 4 ) . Z-19 d i t c h p r e s e n t l y c a r r i e s wastes f rom these f a c i l i t i e s , which have reduced t h e i r opera t ions i n r ecen t years (F igu re 4 ) . Since 1974, t h e pond's major supply o f water has come f rom an evapo ra to r - c r ys ta l 1 i z e r p l a n t v i a U-14 d i t c h (F igu re 4 ) . Th is coo l i n g water j o i n s e f f l u e n t s f rom a laundry which enr i ches t h e pond w i t h a cont inuous supply o f phosphorus (Tab le 1 ) . Th is i s t h e sma l les t and most r a p i d l y f l u s h i n g o f t h e Hanford ponds, and has r e l a t i v e h i gh a l k a l i n i t y and seston concent ra t ions (Tab le 1 ) . I t con ta ins t r ansu ran i c elements and o the r a c t i n i d e s along w i t h low- leve l q u a n t i t i e s o f mixed f i s s i o n and a c t i v a t i o n products (F igu re 4 ) . The a l g a l and macrophyte popu la t i ons are t h e most d i ve rse among Hanford systems (Tables 2 and 4 ) . Al though t h e pe r i phy ton popu 1 a t ions appears r e 1 a t i v e l y a c t i v e (Table 3) , unattached masses o f green algae are most abundant i n t h i s pond. There i s a d i ve rse and moderate ly p roduc t i ve popu la t i on o f i nve r t eb ra tes (Tables 3 and 5), and t he pond a l s o suppor ts a p r o l i f i c g o l d f i s h popu la t i on .

Th is d i t c h has c a r r i e d aqueous wastes i n t o U-Pond from p lu ton ium process ing and suppor t ing l a b o r a t o r i e s i n t h e 200-West Area s i nce 1971 (F igures 1 and 4 ) . L i k e e a r l i e r Z-di tches, t h i s stream has rece ived occas ional re leases o f e f f l u e n t s con ta in i ng ac t i n i des , i n c l u d i n g t ransuran ics , and mixed f i s s i o n and a c t i v a t i o n products (F igu re 4 ) . Such a re lease occurred i n 1976, n e c e s s i t a t i n g t h a t t h e stream be reduced t o ~ 1 0 % o f i t s p rev ious f l o w r a t e . It con ta ins r e l a t i v e l y h i gh seston, a l k a l i n i t y , phosphate, and s i l i c a t e concen t ra t ions , b u t has o n l y smal l amounts of ammonia (Tab le 6 ) . The v a r i e t y o f algae i s r e l a t i v e l y smal l (Table 2) , and t h i s popu la t i on i s dominated by a f i l amentous green a lga growing at tached t o severa l types o f densely populated macrophytes (Tab le 4 ) . The v a r i e t y ,

diversity, and colonization pressure of the invertebrate population is low compared to most other Hanford sites (Tables 3 and 5), and there is no fish life in this stream.

100-N Trench

This trench has received primary cooling water directly from the 1301-N crib at the N-reactor site since 1962-63 (Figures 1 and 5). In addition, it occasionally receives contaminates from the reactor following a fuel element failure. It contains niixed fission and activation products along with actinides, including transuranics (Figure 5). Concentrat ions of most of these nuclides are much greater than those appearing in other Hanford study sites. Its temperature range is also higher than those occurring at the

100-N TRENCH *-- ---

.A A

TELEPHONE POLES

SCREEN COVER

ASSOCIATED RADIONUCLI DES YARDS

0 50 100 - 100

METERS

238~u 5 9 ~ e 13%s

239, 24OP 6 0 ~ o 1 3 7 ~ s

6 5 ~ n 140~a - L a

9 0 ~ r -Y

FIGURE 5. The 100-N trench shown with dimensional information and lists of radionuclides appearing in it.

o the r s i t e s (Table 6 ) . The v a r i e t y of a lgae i s r e l a t i v e 1 low, b u t inc ludes bo th p e r i p h y t i c and unat tached f i lamentous forms (Tab le 2 7 . The macrophyte p o p u l a t i o n i s ve r y sparse (Tab le 4 ) . The i n v e r t e b r a t e p o p u l a t i o n i s r e l a t i v e l y 1 i m i t e d i n v a r i e t y (Tab le 5 ) , b u t has moderate d i v e r s i t y and c o l o n i z a t i o n pressure (Tab le 3 ) . There i s no f i s h l i f e i n t h i s t rench .

RADIOLOGICAL CHARACTERISTICS OF PONDS AND STREAMS

Data d e s c r i b i n g dose r a t e s and water concen t ra t i ons o f r a d i o n u c l i d e s i n

these systems were examined by severa l approaches t o determine which

s t a t i s t i c s bes t represen t t h e s i m i l a r i t i e s and d i f f e r e n c e s among t h e s tudy

s i t e s . A l though i t was d i f f i c u l t t o e s t a b l i s h r e l i a b l e c e n t r a l tendenc ies

f o r many o f these data, due ma in l y t o many samples hav ing lower than

de tec tab le l eve l s , we observed t h a t maximum va lues recu r red f r e q u e n t l y

enough t o d e p i c t a r e l i a b l e upper range o f exposure. We concluded t h a t

maximum dose r a t e s f rom t h e sediment and maximum concen t ra t i ons o f n u c l i d e s

i n water p rov ided t h e b e s t c r i t e r i a f o r grouping these systems

r a d i o l o g i c a l l y . These maxima a l so d e f i n e upper l i m i t s o f r a d i o l o g i c a l

c o n d i t i o n s t o which t he b i o t a t h a t l i v e i n these systems are exposed.

When these aqua t i c systems are viewed i n t h i s way, t h e y e x h i b i t a broad

spectrum o f r a d i o l o g i c a l cond i t i ons . A t one extreme i s 100-N t rench, w i t h 6 5 maximum n u c l i d e concen t ra t i ons o f >5 x 10 pCi /e o f water and >7 x 10 mR/wk

dose f rom t h e sediment (Tab le 7 and F i g u r e 6, a l so see Appendix A,

R a d i o l o g i c a l Parameters). At t h e o the r extreme i s t he B-Pond system, 2 i n c l u d i n g A-29 and 6-3 d i t ches , w i t h maxima o f < 8 x 10 pCi /a o f water and

<10mR/wk from t h e sediments. Gable Pond and U-Pond, i n c l u d i n g Z-19 d i t c h , 3 7 show maximum water a c t i v i t y r ang ing between 10 and 10 pCi/e and maximum

2 3 dose r a t e s from sediments r ang ing between 10 and 10 mR/wk. Al though

Gable Pond has maximum dose r a t e s t h a t were equ i va l en t t o t h e U-Pond system,

i t s maximum concen t ra t i on o f nuc l i des i n t he water i s about two o rde rs o f - magnitude lower and shows s i m i l a r i t y t o t he 6-Pond system (Tab le 7 and

F i g u r e 6 ) . West Pond, converse ly , shows a maximum a c t i v i t y concen t ra t i on i n

water e q u i v a l e n t t o t h a t i n Gable and U-Pond, b u t i t s maximum dose f rom t h e

sediments i s two o rders o f magnitude lower and, thus, s i m i l a r t o t h e B-Pond

system. [ ~ e c a l l t h a t West Pond has n o t been used as a waste hand1 i n g

f a c i l i t y and p robab ly ge ts i t s r a d i o n u c l i d e burden by evapo ra t i ve

m o w w ulna u 0.7 0 . 5 I- U h r e

m o w L C m U w

v- .r C C,

2 2 - t.: 0.7 5 W U E C , & L m w . 7 0, w 0 - L C , L F O 5 C, 1 > m 3 urn I 5 I W C C , nu O W K v , K K Q I W

I l lE a n3. , - m u

u c 5 0 w C . r U U Ln 5 C, -70

C, uU3 w 8.7 w - r

E L c, ? W U > C o w + a ax 5

-Q =? w w r m m N L . - i 5 5 0 0 7 a J 5 K ' t k K C 0 0 5 C, r

0-0 ?+ D.7

L m ~ 3 W E m 0 , 3 o n c m

L w + m w w r w L U W . r m m C E C ' r w ' r O v l O L >.r c a x ' r m O I m C, m - r u 5 U e r C , C w 5 E 5 w E w L w + m r + W C C, 5 U Q I 5 K - X U 0 3 - C W E U U O C l ' r c U 5 w C, .r C L a w o 5 m re nu7.- r

x 5 - 0 -0-C, 1 c 5 o reu m > C 1 - w

5 ul W a l r e J Z IU - o n nn ul 5 m m c u l L m K O . 7 w 0 0 - G L . 7 3 - m u 5 L -r 5 C, re - 7 c n w

- 3 C E r w U .- .r C, . - > m 0.7 5 5 0 M - U J Z a

v v v v v v

- I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . .

. . . ... ... ... ... . . . ... ... . . . ... . . . . . . . .. . . . . . . ... ... . . . ... . . . GABLE P . . . . . . . ... . . . . . . . . . ... . . . U - P O N D . . . . . . . . . 2- 19 D. ... . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I I I

> lo1 - 10 2 lo3 104 lo5 lo6

< lo2 ., l d , 1 o6 7

M A X l M L l M ACTIVITY CONCENTRATIONS IN WATER (pC11 l )

FIGURE 6. A m a t r i x o f maximum n u c l i d e c o n c e n t r a t i o n s i n wa te r vs. maximum dose r a t e s f rom sediments, used t o suggest a r e l a t i v e group ing o f t h e s t u d y s i t e s on t h e b a s i s o f t h e i r r a d i o l o g i c a l c o n d i t i o n s .

c o n c e n t r a t i o n o f n u c l i d e s f r o m t h e groundwater. A few ana lyses o f West Pond

water show t h a t t o t a l u ran ium c o n c e n t r a t i o n s occur as h i g h as 240 pC i /a

(Larson, H. F., 1977, p r i v a t e communication, B a t t e l l e , P a c i f i c Nor thwest

L a b o r a t o r i e s , R ich land, MA). ]

Concen t ra t i ons o f a lpha a c t i v i t y i n water a r e h i g h e s t i n Z-19 d i t c h 6 (maximum of 4.6 x 10 pCi/R) where a c t i n i d e s , m a i n l y t r a n s u r a n i c s , a r e

p resen t . Alpha r a d i a t i o n has v e r y low p e n e t r a t i o n , hence, a lpha e m i t t i n g

i s o t o p e s i n t h e sediment do n o t produce a s i g n i f i c a n t dose t o organisms i n

o v e r l y i n g water. A l l o t h e r systems excep t f o r B-Pond and A-29 d i t c h have

maximum c o n c e n t r a t i o n s o f a lpha e m i t t e r s o f about l o 2 pCi/R ( T a b l e 7 ) .

T o t a l n u c l i d e c o n c e n t r a t i o n s a r e h i g h i n 100-N t r e n c h wa te r compared t o 6 t h e water o f o t h e r systems (maximum . ~ 6 x 10 pCi/R). No o t h e r s i t e has

4 c o n c e n t r a t i o n s exceeding 2 x 10 p C i / R . However, t h e U-Pond system shows

t o t a l B c o n c e n t r a t i o n s o f 5 x l o3 p C i l R i n t h e pond and 1 x l o4 pCi /R

i n Z-19 d i t c h . There a r e i n d i c a t i o n s t h a t these B emiss ions a r e f r o m

s t r o n t i u m and cesium d e p o s i t s l e f t by e a r l i e r waste d i scharges . West Pond 3 has n o t a b l e t o t a l B a c t i v i t y i n i t s wa te r (maximum o f 1 x 10 pC i /a ) ,

wh ich may be caused by t h e pond 's uranium c o n t e n t . I n s p i t e o f West Pond's

r e l a t i v e l y h i g h t o t a l B c o n c e n t r a t i o n s i n t h e water, i t s dose r a t e f rom t h e

sediments i s r e l a t i v e l y low (<4 mR/wk, Tab le 7 ) . Gable Pond and A-29 d i t c h 3

have maximum n u c l i d e c o n c e n t r a t i o n s i n water o f a p p r o x i m a t e l y 1 x 10 pCi/R,

w h i l e t h e rema in ing systems a l l have maximum c o n c e n t r a t i o n s below t h i s l e v e l .

I n g roup ing these systems r a d i o l o g i c a l l y f o r comparat ive purposes, i t

i s obv ious t h a t 100-N t r e n c h stands a p a r t ' f r o m t h e o t h e r s . Hence, t h e s e

systems can be grouped i n t o two r a d i o l o g i c a l c a t e g o r i e s h a v i n g e i t h e r low o r

h i g h r a d i o a c t i v e p r o p e r t i e s . A second o p t i o n i s t o use t h r e e c a t e g o r i e s

based on t h e t h r e e groups shown i n F i g u r e 6. T h i s would a t t e m p t t o

d i s c r i m i n a t e these systems on a r e l a t i v e b a s i s o f low, medium and h i g h

r a d i o a c t i v e p r o p e r t i e s . It should be noted t h a t w h i l e these 3 g roup ings a re

c l e a r l y separated i n terms o f maximum doses f r o m sediments, t h e r e i s

c o n s i d e r a b l e over l a p i n t h e i r maximum c o n c e n t r a t i o n s o f n u c l i d e s i n water.

DISCUSSION

S ince we a r e i n t e r e s t e d i n d e t e r m i n i n g i f t h e n u c l e a r wastes t h a t e n t e r

t h e s e a q u a t i c systems a f f e c t t h e c o l o n i z a t i o n and p r o d u c t i v i t y o f b i o t a , we

w i l l examine t h e e c o l o g i c a l p r o f i l e s o f t hese ponds and s t reams i n an

a t t e m p t t o i d e n t i f y v a r i a t i o n s t h a t m i g h t be a s s o c i a t e d w i t h t h e r e l a t i v e

c a t e g o r i e s o f c o n t a m i n a t i o n ( F i g u r e 6 ) . A l though t h e b i o l o g i c a l a c t i v i t y i n

t h e s e systems may show t o l e r a n c e and s e n s i t i v i t i e s t o n u c l e a r wastes, t h e y

w i l l a l s o r e f l e c t c o n d i t i o n s o f h a b i t a t such as temperature , a v a i l a b l e

s u b s t r a t e , f l o w r a t e s , n u t r i e n t supp ly and o t h e r chemica l c o n d i t i o n s , and

l i g h t p e n e t r a t i o n ; none o f wh ich a re un ique t o Hanford. Hence, common

env i ronmen ta l f a c t o r s t h a t o r d i n a r i l y l i m i t and c o n t r o l b i o l o g i c a l a c t i v i t y

w i l l be superimposed o v e r any v a r i a t i o n s i n t h e b i o t a t h a t may be a t t r i b u t e d

t o t h e presence o f n u c l e a r wastes. T h i s w i l l reduce t h e r e s o l v i n g power o f

o u r assessment and may p r e v e n t d e f i n i t i v e c o n c l u s i o n s about r e l a t i o n s h i p s

between rad-wastes and e c o l o g i c a l p rocesses. I f we cannot e s t a b l i s h such

r e l a t i o n s h i p s u s i n g t h e s e a q u a t i c systems, t h e n we must conc lude t h a t o u r

i n d i c a t o r s l a c k s u f f i c i e n t s e n s i t i v i t y o r t h a t h i g h e r l e v e l s o f

c o n t a m i n a t i o n a re needed t o demonst ra te e f f e c t s i n these t y p e s o f f r e s h w a t e r

env i ronments .

ECOLOGICAL VARIATION I N HANFORD SYSTEMS

A l g a l p o p u l a t i o n s a r e p r e d o m i n a t e l y p e r i p h y t i c i n a l l systems e x c e p t

U-Pond and 100-N t r e n c h ( T a b l e 2 ) . These-sys tems s u p p o r t r e l a t i v e l y

abundant masses o f una t tached f i l a m e n t o u s green a lgae. B lue-green a l g a e

appear i n a l l systems showing a moderate r e l a t i v e abundance. O f these,

O s c i l l a t o r i a c e a e a re t h e most prominant . Green a lgae a r e w e l l r e p r e s e n t e d

i n a l l systems. Forms o f desmid, oocys tacean and f i l a m e n t o u s g reen a l g a e

a r e found a t a l l s i t e s . Eug leno ids and d i n o f l a g e l l a t e s appear o n l y i n

U-Pond and West Pond. Diatoms a r e m o d e r a t e l y abundant i n a l l systems. The

more f r e q u e n t l y o c c u r r i n g d ia toms be long t o t h e f a m i l i e s Coscinodiscaceae,

Nav icu laceae, Cymbellaceae, and F r a g i l a r i a c e a e . Cryptomonads a r e found i n

moderate q u a n t i t i e s i n most ponds and some d i t c h e s . The v a r i e t y o f a l g a e i n

Z-19 d i t c h and 100-N t r e n c h i s reduced i n compar ison t o t h e o t h e r systems.

These s i t e s have t h e h i g h e s t maximum n u c l i d e concen t ra t i ons i n water b u t a re

severa l o rders o f magnitude apar t i n terms of maximum dose r a t e s f rom t h e

sediment (F i gu re 6 ) .

Mean r a t e s w i t h which pe r i phy ton popu la t i ons c o l o n i z e bare subs t ra tes 2

- 2 range f rom 6 p g Chl a/cm per day i n A-29 d i t c h t o 87 pg Chl a/cm per

day i n 8-3 d i t c h , and mean r a t e s among ponds range f rom 17 t o 73 p g Chl 2 a/cm per day (West Pond and B-Pond r e s p e c t i v e l y , Table 3 ) . The v a r i a t i o n -

o f these pe r i phy ton c o l o n i z a t i o n r a t e s does n o t suggest an a s s o c i a t i o n w i t h

t he r e l a t i v e ca tego r i es o f contaminat i o n i n F i gu re 6. Furthermore, these

r a t e s are s i m i l a r t o those measured by t h e same method i n Lake Sammamish and

seve ra l of i t s t r i b u t a r i e s l oca ted i n western Washington. The mean 2 c o l o n i z a t i o n r a t e f o r these streams was 32 u g Chl - a/cm pe r day, w h i l e t h e

l a k e ' s pe r i phy ton p o p u l a t i o n co l on i zed a bare subs t ra te a t a mean r a t e of 2 o n l y 1 p g Chl a/cm per day (Emery e t a1 ., 1973). ( I t i s no t unreasonable

t o f i n d pe r i phy ton c o l o n i z a t i o n p ressure i n a l a r g e l a k e t o be l e s s than

t h a t i n a pond.) We conclude t h a t w h i l e the' c o l o n i z a t i o n a c t i v i t y of a lgae

i n Hanford aqua t i c systems does no t show v a r i a t i o n s t h a t c o r r e l a t e w i t h

nuc lear waste content , t h e v a r i e t y o f a lgae appears t o be reduced i n t h e two

systems w i t h t h e h i g h e s t r a d i o a c t i v e content , 100-N t r ench and Z-19 d i t c h .

Resu l t s o f macrophyte surveys show t h a t some form o f vascu la r p l a n t i s

found i n every system (Tab le 5 ) . Bulrushes (Sc i r pus ) appear i n a l l systems

and c a t t a i l s (Typha) appear i n most. Gable Pond, U-Pond and Z-19 d i t c h have

t h e g r e a t e s t v a r i e t y and r e l a t i v e abundance of macrophytes. Cottonwoods

(Populus) appear around Gable Pond, A-29 d i t c h and t h e U-Pond system.

Pondweed (Potamogeton) appear i n a l l ponds except West Pond and speedwell

(Veron ica) appear i n a l l streams. H o r s e t a i l (Equisetum) was observed a t

Gable and U-Pond, and hornwor t (Ceratophy l lum) and water m i l f o i 1

(Myr iophy l lum) are found o n l y i n Gable Pond. Duckweed (Lemna), smartweed

(Polygonum) and w i 1 lows (Sa l i x ) were observed o n l y a t U-Pond. Watercress

(Ror ippa) and w i l d l e t t u c e (Lactuca) appear i n U-Pond and Z-19 d i t c h .

The genera l appearance o f macrophytes i n these systems i n d i c a t e s t h a t

100-N t r ench i s d e f i c i e n t i n vascu la r p l a n t popu la t i ons when compared t o t h e

r e s t . However, t h i s t r ench appears t o be a poor h a b i t a t f o r macrophytes

because of 1 i g h t 1 i m i t a t i o n s and h i ghe r temperatures. Coo l ing water f rom

t h e 1301-N c r i b i s d ischarged d i r e c t l y i n t o 100-N t r ench caus ing i t s

temperatures t o f r e q u e n t l y r a i s e more t han 8°C above temperatures o f o t he r

systems. Also, t h e steep embankments and p r o t e c t i v e screen, which c o l l e c t s

tumbleweeds, reduces a v a i l a b l e l i g h t needed f o r macrophyte growth.

Therefore, we conclude t h a t t h e r e l a t i v e d e f i c i e n c y o f macrophytes i n 100-N

t r ench cou ld e a s i l y be a t t r i b u t e d t o p h y s i c a l f ac to r s . Hence, i t i s n o t y e t

p o s s i b l e t o determine i f t he r a d i o a c t i v e m a t e r i a l s a re s i g n i f i c a n t l y

i nvo l ved i n t h e reduced v a r i e t y and abundance o f macrophytes i n 100-N t rench.

I n v e r t e b r a t e s t h a t are commonly found i n many sma l l e r f reshwate r

environments a l s o appear i n Hanford aqua t i c systems (Tab le 5 ) . Along w i t h a

v a r i e t y o f i nsec ts , an assortment of f latworms, segmented worms,

crustaceans, arachnids, s n a i l s , and g o l d f i s h were found i n many o f these

s i t e s . A l l systems suppor t popu la t i ons o f segmented worms (O l igochae ta ) and

midge l a r vae (Chironomidae). I n a d d i t i o n t o chironomids, t h e most

f r e q u e n t l y observed i nsec t s were may f l y l a r vae (Baet idae) , t h e d r a g o n f l i e s

Aeschna and L i b e l l u l a and t h e damse l f l y Ischnura, w a t e r s t r i d d e r s (Ger r idae) , backswimmers (Notonect idae) , waterboatmen (Co r i x i dae ) , cadd i s f l y l a r v a e

( T r i c o p t e r a ) , and predaceous d i v i n g b e e t l e s (Dy t i s c i dae ) . The ponds (excep t West Pond) are more r i c h l y popula ted w i t h aqua t i c

fauna i n terms o f v a r i e t y and r e l a t i v e abundance than t h e streams. U-Pond,

i n p a r t i c u l a r , appears t o have t h e most complete c u l t u r e o f aqua t i c animal

1 i f e . West Pond, due t o i t s d i s c r i m i n a t i n g chemist ry , has fewer numbers and

a sma l le r v a r i e t y o f animal l i f e , resembl ing t he i n v e r t e b r a t e popu la t i ons

o c c u r r i n g i n Hanford streams. The v a r i e t y o f i n v e r t e b r a t e s i n A-29 d i t c h i s

a l s o r e l a t i v e l y sma l l e r and may have been l i m i t e d by chemica ls t h a t are

o c c a s i o n a l l y d ischarged i n t o t h i s stream. The two systems w i t h h i g h e s t

doses f rom t h e sediments and n u c l i d e concen t ra t i ons i n t h e water (100-N

t r ench and Z-19 d i t c h ) suppor t r e l a t i v e l y sma l l e r v a r i e t i e s o f

i n v e r t e b r a t e s . However, v a r i e t i e s o f these i n v e r t e b r a t e popu la t i ons a re n o t

s i g n i f i c a n t l y l ess than those i n West Pond o r A-29 d i t c h . Since a l l f o u r

systems appear t o have unusual phys icochemica l and/or r a d i o l o g i c a l

cond i t i ons , t h i s genera l r e d u c t i o n i n v a r i e t y appears t o i n d i c a t e an

assoc ia t i on w i t h f a c t o r s o f env i ronmenta l s t r e s s and 1 i m i t a t i o n .

Mean i n v e r t e b r a t e c o l o n i z a t i o n r a t e s are h i g h e s t i n Gable Pond and B-3 2 d i t c h (1020 and 1610 o r g a n i s m s h per day, r e s p e c t i v e l y ) and lowest i n

Z-19 d i t c h , West Pond and A-29 d i t c h (< loo, 188 and 275, r e s p e c t i v e l y ,

Tab le 3 ) . Whi le Z-19 d i t c h had v e r y weak c o l o n i z a t i o n pressure, t h e mean 2 r a t e o f i n v e r t e b r a t e c o l o n i z a t i o n i n 100-N t r e n c h (897 o r g a n i s m s h p e r

day) was h i g h e r t h a n those o c c u r r i n g i n most ponds and much h i g h e r t h a n

those i n 2 o f t h e d i t c h e s . A-29 d i t c h appears l e a s t a b l e t o suppor t

i n v e r t e b r a t e l i f e , and s i n c e t h i s d i t c h i s t h e l e a s t contaminated o f ou r

s t u d y s i t e s , we a t t r i b u t e t h i s r e l a t i v e l y sma l l p o p u l a t i o n o f i n v e r t e b r a t e s

t o t h e i n t e r m i t t e n t d ischarges o f n o n r a d i o l o g i c a l wastes t h a t appear t o

l i m i t c o l o n i z a t i o n and growth o f b i o t a . The system hav ing t h e h i g h e s t

temperatures and g r e a t e s t c o n t e n t o f r a d i o a c t i v e m a t e r i a l s , 100-N t rench,

suppor ts an i n s e c t p o p u l a t i o n w i t h more v a r i e t y and p r o d u c t i v i t y than some

systems w i t h much lower l e v e l s o f contaminat ion.

I n d i c a t o r s o f community d i v e r s i t y based on these i n s e c t p o p u l a t i o n s

show t h a t ponds g e n e r a l l y have h i g h e r d i v e r s i t y than streams ( T a b l e 3 ) . For

ponds, mean community d i v e r s i t y ( H ' ) ranged f rom 1.2 (West Pond) t o 2.1

(Gable and U-Pond). Mean H' f o r streams ranged f rom 0.1 i n B-3 d i t c h t o 0.9

i n 100-N t rench, a l though 100-N t r e n c h appears t o be more o f a l e n t i c

environment t h a n t h e d i t c h e s . These ranges o f H ' a r e s i m i l a r t o t h a t

observed i n t h e Columbia R i v e r d u r i n g 1975-1977 (0.4 - 1.8, Page and

N e i t z e l , 1977).

I n comparison t o o f f s i t e environments, t h e range o f H' i n Hanford

a q u a t i c systems i s more reduced t h a n those i n an Ohio s t ream (0.3 - 3.5,

E g l o f f and Brake l , 1973) o r those i n an Oklahoma stream r e c e i v i q g domest ic

and o i l r e f i n e r y e f f l u e n t s (0.3 - 3.4, Wilhm and D o r r i s , 1966). These H '

ranges can a l s o be compared t o t h e r e s u l t s o f a survey made by Wilhm (1970)

i n s e v e r a l r e g i o n s o f t h e U n i t e d S ta tes . A f t e r s t u d y i n g ranges o f d i v e r s i t y

i n d i c e s i n some mid-western, western, and south-eastern .streams, he

concluded t h a t p o l l u t e d streams u s u a l l y have H 1 < l , w h i l e H' v a r i e s between 3

and 4 i n c lean-water streams. Whi le H' va lues i n Hanford ponds f a l l between

these two extremes, Hanford streams cou ld be ranked i n t h e p o l l u t e d ca tego ry

on t h e bas is o f t h e i r H' data, assuming t h a t t h i s comparison i s v a l i d . (b

The evenness w i t h which i n v e r t e b r a t e s are d i s t r i b u t e d among t h e

f a m i l i e s (mean J ' ) i n Hanford systems i s g e n e r a l l y h i ghe r i n ponds (0.5 - 0.8,) than i n streams (0.04 - 0.5, Table 3 ) . Evenness o f t h e Columbia R i ve r

i n v e r t e b r a t e p o p u l a t i o n ranged f rom 0.1 t o 0.6 (Page and N e i t z e l , 1977), and

0.3 t o 0.7 i n an Ohio stream ( E g l o f f and Brake l , 1973). I n making these

comparisons, i t should be p o i n t e d o u t t h a t t h e r i chnesses ( i .e . , number o f

t a x a o f i n v e r t e b r a t e s ) i n these systems were cons iderab le h i ghe r than those

o f Hanford s tudy s i t e s . Richness i n d i c e s (s, Table 3 ) f o r Hanford s tudy

s i t e s ranged f rom 0 t o 8, w h i l e those i n t h e Columbia R i ve r ranged f rom 4 t o

13, those i n an Ohio stream f rom 8 t o 29, and those i n an Oklahoma stream

f rom 2 t o 18.

G o l d f i s h popu la te Gable Pond, U-Pond and B-Pond, and B-3 d i t c h . Only

U-Pond and Gable Pond have l a r g e popu la t i ons o f g o l d f i s h . Popu la t i on

es t imates have been made o n l y i n U-Pond, showing a maximum p roduc t i on r a t e

of about 40 kg /hec ta re pe r day. Th i s f a l l s w i t h i n p roduc t i on ranges f o r

suckers and carp r epo r t ed by Car lander (1955) f o r a number o f Nor th American

f reshwate r systems.

The genera l appearance o f animal l i f e i n t he Hanford s tudy s i t e s does

n o t i n d i c a t e an a s s o c i a t i o n w i t h ou r grouping o f these systems i n terms o f

n u c l i d e concen t ra t i on and dose, a l though t h e r e i s a weak suggest ion t h a t

v a r i e t y of i n v e r t e b r a t e popu la t i ons may be reduced by h i g h e r l e v e l s o f

r a d i o a c t i v i t y . However, we a l s o observed t h a t some aqua t i c systems w i t h

(b ) When comparing our d i v e r s i t y express ions w i t h those ob ta ined by o t h e r i n v e s t i g a t o r s , we recogn ize t h a t t h e taxonomic l e v e l d e f i n i n g r i c h n e s s ( s ) may n o t be c o n s i s t e n t among a l l s tud ies . For our study, we s p e c i f y . s a t t h e f a m i l y l e v e l , w h i l e o the r s t u d i e s may use a d i f f e r e n t taxonomic l e v e l t o d e f i n e s. Some s t u d i e s may even use seve ra l taxonomic l e v e l s f o r s de te rmina t ions , depending upon t h e e x t e n t o f i d e n t i f i c a t i o n c a r r i e d o u t f o r any p a r t i c u l a r organism. The use o f t h e lowest common taxon i s p r e f e r e d over m u l t i p l e t a x a f o r s p e c i f y i n g s because t he H' equa t ion was developed f o r one conllnon l e v e l o f taxonomic grouping, n o t f o r seve ra l grouping arrangements f a c t o r e d i n t o t h e same H ' c a l c u l a t i o n . Since we use t h e f a m i l y l e v e l as t h e lowes t common taxon, our H' express ions may be more conse rva t i ve than o t h e r s ob ta i ned through u s i n g a lower taxon o r seve ra l t a x a i n combinat ion.

l e sse r amounts o f r a d i o a c t i v i t y have reduc t i ons i n t h e v a r i e t y i n t h e i r

i n v e r t e b r a t e s which may be assoc ia ted w i t h harsh chemical cond i t i ons . Data

f o r o the r parameters do n o t i n d i c a t e an a s s o c i a t i o n between t h e d i v e r s i t y

and p r o d u c t i v i t y o f animal l i f e and t h e r e l a t i v e amounts o f nuc l ea r wastes.

The c o l o n i z a t i o n p ressure o f t h e i n v e r t e b r a t e p o p u l a t i o n i n 100-N t r e n c h was

g rea te r than t h r e e o f t he ponds and two o f t he o the r streams. Ranges o f

community d i v e r s i t y i n d i c e s f o r Hanford systems a re s i m i l a r t o those found

i n the Columbia River , b u t are somewhat lower than those i n o f f s i t e

re fe rence streams. Hence, c o n d i t i o n s o f n a t u r a l h a b i t a t may p rov i de a

b e t t e r exp lana t i on f o r these d i f f e rences than t h e presence o f nuc lea r wastes.

EFFECTS OF IONIZING RADIATION OBSERVED IN OFFSITE ENVIRONMENTS

Since ou r s tudy has no t produced conc lus i ve evidence t h a t aqueous

nuc lea r wastes have a f fec ted t h e b i o t a i n Hanford ponds and streams, we w i l l

e xp l o re the p o s s i b i l i t y t h a t these l e v e l s o f con tamina t ion a re i n s u f f i c i e n t

t o impact t h e c o l o n i z a t i o n , v a r i e t y and p r o d u c t i v i t y o f aqua t i c l i f e

o c c u r r i n g i n these systems. Al though t h e r e a re no da ta t h a t r e l a t e l e v e l s

o f r a d i o a c t i v e con tamina t ion t o e f f e c t s measured i n aqua t i c ecosystems,

in format i on i s ava i 1 ab le t h a t desc r ibes damage f rom i o n i z i n g r a d i a t i o n t o

some aqua t i c organisms and t e r r e s t r i a l communities.

Ranges o f i o n i z i n g r a d i a t i o n t h a t caused l i m i t e d damage t o aqua t i c l i f e

a re summarized and repo r t ed by Po l i ka rpov (1966) and IAEA (1976). These

da ta are expressed as amounts o f r a d i a t i o n rece ived by a v a r i e t y o f aqua t i c

organisms over s p e c i f i e d pe r i ods o f time;and many o f these r e s u l t s a re

based on sho r t - t e rm exposures ( i .e. , 7 t o 75 days). I n o rde r t o compare

these dose r a t e s t o those o c c u r r i n g i n Hanford systems, we w i l l express a l l

r a d i a t i o n doses i n terms o f R/day. Th i s assessment w i l l f ocus on l e v e l s o f

r a d i a t i o n t h a t produce o n l y l i m i t e d e f f e c t s i n b i o t a . Higher dose r a t e s

w i l l obv i ous l y be l e t h a l t o t h e b i o t a and w i l l n o t i d e n t i f y t h e minimum

l e v e l s o f r a d i a t i o n needed t o damage l i v i n g systems.

Dose r a t e s o f i o n i z i n g r a d i a t i o n hav ing l i m i t e d e f fec ts on f reshwate r

a lgae range f rom 50 t o 1700 Rlday ( F i g u r e 7 ) . The genera o f a lgae f o r . w h i c h

dose e f f e c t s are r epo r t ed were found i n most Hanford s tudy s i t e s , i n c l u d i n g .

100-N t rench. Freshwater i n v e r t e b r a t e s beg in t o show damage f rom doses

R *I DAY

1 0 - ~ 1 0 - ~ loo l o 2 RANGES OF DOSES OBSERVED I N HANFORD AQUATIC SYSTEMS:

A-29 DITCH

WEST POND

8 -3 DITCH

B-POND

2 - 1 9 DITCH

U-POND

GABLE POND

1 W N TRENCH

RANGES W I T H I N WHICH ILIMITED DAMAGE ( M I NOR TO INTERMEDIATE) HAS BEEN OBSERVED:

AQUATIC ORGAN1 SMS (POL1 KARPOV 1%6 AND IAEA 1976):

ALGAE

l NVERTEBRATES

TERRESTRIAL COMMUNITIES (WHICKER AND FRALEY 1974):

CONIFEROUS FOREST

DECl DUOUS FOREST

GRASSLAND

UPPER RANGE OF BACKGROUND DOSES FROM NATURAL SOURCES OF I O N I Z I N G RAD IA'I'ION **

-AQUATIC (POLIKARPOV 1966 AND IAEA 1976)

TERRESTRIAL (EISENBUD 1973 AND BLUMER et al. 1976)

* ASSUME r a d R

** DOSE FROM INTERNAL EMITTERS INCLUDED, ALPHA DOSE EXCLUDED

FIGURE 7. A comparison o f doses o f i o n i z i n g r a d i a t i o n a t t he sediment-water i n t e r f a c e of Hanford aqua t i c systems w i t h doses observed t o cause minor t o i n te rmed ia te damage i n aqua t i c organisms and t e r r e s t r i a l communities.

r a n g i n g f r o m 60 t o 1100 R/day. N e a r l y a l l o f these genera a re found i n most

Hanford ponds and streams, b u t o f t h e i n v e r t e b r a t e s f o r which dose e f f e c t s

d a t a a re repor ted , o n l y s n a i l s a r e found i n 100-N t rench . Freshwater

f i s h e s , i n c l u d i n g t h e genera Carass ius ( g o l d f i s h ) , Oncorhynchus (salmon),

and Salmo ( t r o u t ) , showed 1 i m i t e d damage f rom r a d i a t i o n w i t h i n a range o f 20

t o 120 Rlday. Carass ius has t h r i v e d i n Gable Pond, B-Pond and B-3 d i t c h ,

and U-Pond f o r many years, b u t i t i s d o u b t f u l t h a t g o l d f i s h have ever been

i n t r o d u c e d i n t o 100-N t rench. Amphibians a r e r e p o r t e d t o b e g i n t o show

damage by doses i n t h e range o f 1 t o 100 R/day. T h i s i n d i c a t e s t h a t they

a re t h e most s e n s i t i v e t o r a d i a t i o n aniong those f r e s h w a t e r organisms f o r

which t h e r e a re data. A l though amphibian l i f e i s n o t f r e q u e n t l y observed i n

Hanford a q u a t i c systems, a sma l l c l u s t e r o f tadpo les was found i n U-Pond i n

1974.

These d a t a d e s c r i b i n g minimum amounts o f r a d i a t i o n r e q u i r e d t o produce

e f f e c t s on a q u a t i c b i o t a i n d i c a t e t h a t damage may be caused by doses i n t h e

range o f f rom 1 t o 1700 R/day ( F i g u r e 7 ) . A1 1 Hanford s t u d y s i t e s have

doses f rom t h e sediment t h a t fa1 1 below t h i s range ( ~ 0 . 1 R/day), except

100-N t r e n c h which shows dose r a t e s r a n g i n g f rom 50 t o 100 R/day.

Therefore , these f i n d i n g s suggest t h a t o n l y 100-I\ t r e n c h has l e v e l s o f

r a d i a t i o n t h a t c o u l d perhaps l i m i t t h e c o l o n i z a t i o n and growth o f a q u a t i c

1 i f e .

E f f e c t s o f i o n i z i n g r a d i a t i o n on t e r r e s t r i a l communit ies have been

summarized and r e p o r t e d b y Whicker and F r a l e y (1974). These d a t a i n d i c a t e

t h a t a c o n i f e r o u s f o r e s t i s t h e most s e n s i t i v e t o r a d i a t i o n among

t e r r e s t r i a l communit ies, showing m i n o r t o i n t e r m e d i a t e damage f rom dose

r a t e s r a n g i n g f r o m 5 t o 100 R/day ( F i g u r e 7 ) . The most t o l e r a n t o f these

was t h e moss- l ichen community, showing l i m i t e d damage f rom doses r a n g i n g

f rom 500 t o 25,000 R/day. Hence, these r a d i a t i o n - e f f e c t s da ta i n d i c a t e t h a t

t e r r e s t r i a l communit ies w i l l b e g i n t o show l i m i t e d damage f rom dose r a t e s

t h a t r o u g h l y c o i n c i d e w i t h those r a t e s r e q u i r e d t o cause l i m i t e d e f f e c t s i n

a q u a t i c organisms. However, 100-N t r e n c h has dose r a t e s t h a t a r e s i m i l a r

o n l y t o those ranges o f dose a f f e c t i n g c o n i f e r o u s f o r e s t , deciduous f o r e s t ,

and shrub communit ies ( F i g u r e 7). Grassland and moss-1 ichen communit ies a r e

n o t a p p a r e n t l y damaged by l e v e l s o f r a d i a t i o n found i n 100-N t rench .

I t i s wor th n o t i n g here t h a t t h e more p r i m i t i v e t e r r e s t r i a l communit ies

appear t o have g r e a t e r t o l e r a n c e t o r a d i a t i o n than t h e more h i g h l y evo lved

p l a n t l i f e o f t he shrub, deciduous, and con i f e rous communit ies. The same

appears t o be t r u e f o r aqua t i c organisms; t he l esse r evo lved a lgae and

i n v e r t e b r a t e s show g r e a t e r t o l e rance t o r a d i a t i o n than t h e more advanced

f i s h and amphibians.

Th is comparison o f s u s c e p t i b i l i t i e s t o r a d i a t i o n by aqua t i c organisms

and t e r r e s t r i a l communit ies may p rov i de an exp lana t i on f o r t h e a b i l i t y o f

100-N t r ench t o suppor t a moderate d i v e r s i t y o f aqua t i c l i f e d e s p i t e i t s

p o t e n t i a l l y harmfu l l e v e l s o f r a d i a t i o n . The r a d i a t i o n f rom 100-N t r e n c h

sediments may be p r o h i b i t i v e t o some, b u t c e r t a i n l y n o t a l l , aqua t i c

organisms. B i o t a t h a t develop communit ies i n 100-N t r ench rep resen t lower

forms o f e v o l u t i o n a r y advancement and can t o l e r a t e these h i g h e r l e v e l s o f

r a d i a t i o n . These same organisms a re common t o most sma l l e r f r eshwa te r

environments and a1 so appear i n the o t h e r Hanf o rd aqua t i c systems.

Therefore, it becomes more d i f f i c u l t t o d i f f e r e n t i a t e 100-N t r e n c h f rom t h e

o t h e r systems on t he bas i s o f b i o t a appear ing i n them, and as a r e s u l t , ou r

s tudy does n o t produce c l e a r evidence a t e i t h e r t h e community o r t h e

organismic l e v e l t h a t these q u a n t i t i e s o f nuc lear wastes a f f e c t t h e

occurrence and growth o f aqua t i c 1 i f e .

SUMMARY AND CCINCLUSIONS

Th i s s tudy has g e n e r a l l y cha rac te r i zed t h e l i m n o l o g i c a l and

r a d i o l o g i c a l c o n d i t i o n s t h a t e x i s t i n aqua t i c environments on t h e Hanford

S i t e ( exc l ud ing t h e Columbia R i v e r ) and at tempted t o determine i f nuc lea r

waste d ischarges can be r e l a t e d t o e c o l o g i c a l v a r i a t i o n among these

systems. A l l s tudy s i t e s have rece i ved wastes d i r e c t l y f rom nuc lea r

f a c i l i t i e s except West Pond, which i s i nc l uded i n t h i s i n v e s t i g a t i o n because

o f i t s n a t u r a l accumulat ion o f r a d i o a c t i v i t y and i t s i n t e r e s t i n g l imnology.

The aqua t i c systems t h a t were s tud ied i n c l u d e Gable Pond and West Pond

loca ted i n t h e 200-North Area near Gable Mountain; t h e B-Pond system near

t he 200-East Area, i n c l u d i n g B-3 and A-29 d i t ches ; t h e U-Pond system i n s i d e

t h e 200-West Area, i n c l u d i n g Z-19 d i t c h ; and 100-N t r ench which l i e s near

t he 100-N r e a c t o r s i t e .

Along w i t h a s h o r t h i s t o r i c a l d e s c r i p t i o n , each system i s assessed -in

terms t h a t desc r ibe i t s phys i ca l , chemical and b i o l o g i c a l l imno logy and i t s

genera l r a d i o a c t i v e charac te r expressed as doses f rom t h e sediments and

concen t ra t i ons o f a and B-Y n u c l i d e s i n t h e water. Maximum dose r a t e s and

n u c l i d e concen t ra t i ons are used t o group these systems i n t o t h r e e ca tego r i es

d i f f e r e n t i a t e d by r e l a t i v e con ten t o f nuc lear wastes. The B-Pond system and

West Pond f a l l i n t o t h e lowest ca tegory o f nuc lear waste content , w h i l e

100-N t rench a lone represen ts t h e h i ghes t category . A mid-range grouping i s

suggested by Gable Pond and t he U-Pond system, a l though these systems show

cons iderab le ove r l ap w i t h those i n t h e o the r groups i n terms o f maximum

a c t i v i t y i n water. F i n a l l y , l i t e r a t u r e resources a re used t o i d e n t i f y

minimum l e v e l s o f r a d i a t i o n t h a t have been shown t o be harmfu l t o some

aqua t i c organisms and t e r r e s t r i a l communit ies. The range o f r a d i a t i o n dose

observed t o be m a r g i n a l l y damaging t o these b i o l o g i c a l systems was compared

t o t he measured l e v e l s o f r a d i a t i o n i n t h e Hanford ponds and streams t o

determine i f r a d i a t i o n f rom nuc lea r wastes i n these systems i s s u f f i c e n t t o

a f f e c t t he aqua t i c communit ies t h a t c o l o n i z e them.

A1 1 systems suppor t popu la t i ons o f commonly o c c u r r i n g algae,

macrophytes, i n ve r t eb ra tes , and i n some cases, f i s h . A1 though t h e v a r i e t y

i n a l g a l popu la t i ons i s reduced i n 100-N t r ench and Z-19 d i t c h , v a r i e t y i n

o the r types o f b i o t a i s no t . Community s t r u c t u r e s i n these systems appear

t o be as d i v e r s e as those i n t h e Columbia R i v e r b u t occas iona l l y l e s s

d i v e r s e than i n some o f f s i t e - r e f e r e n c e streams. The p r o d u c t i v i t y o f p l a n t

l i f e , i n v e r t e b r a t e s and f i s h i n these systems does n o t appear t o be

assoc ia ted w i t h t he r e l a t i v e amounts o f nuc lear waste con tamina t ion .

Furthermore, t h e i r r a t e s of p r o d u c t i v i t y resemble those measured i n aqua t i c

environments n o t assoc ia ted w i t h nuc lear a c t i v i t i e s . I n terms o f t h e

parameters s tud ied, we f i n d no conc lus i ve evidence t h a t t h e r a d i o n u c l i d e s

d ischarged i n t o Hanford ponds and streams have a f f e c t e d t h e c o l o n i z a t i o n ,

d i v e r s i t y , and a c t i v i t y o f b i o t a t h a t appear i n them.

Desp i te t h i s lack o f e c o l o g i c a l evidence, we have determined f rom t h e

l i t e r a t u r e t h a t one system (100-N t r ench ) con ta i ns enough r a d i a t i o n t o be

p o t e n t i a l l y ha rmfu l t o some aqua t i c organisms and t e r r e s t r i a l communit ies.

However, t h i s ecosystem does no t g i v e c l e a r i n d i c a t i o n t h a t i t s b i o t a a re

i n f l uenced by t h i s r a d i a t i o n . We recogn ize t h a t t h e organisms e x i s t i n g i n

t h e r a d i a t i o n f rom 100-N t rench sediments a re common t o most sma l l e r

f reshwate r environments and a l s o appear i n o t h e r Hanford aqua t i c systems.

Therefore, these nuc lea r waste ponds and streams cannot be d i f f e r e n t i a t e d

between o f f s i t e systems o r among themselves on t h e bas i s o f a comprehensive

b i o l o g i c a l p r o f i l e .

REFERENCES

American Public Health Association, and others. 1976. Standard Methods for the Examination of Water and Waste Water. 14th ed. ~ ~ ~ ~ T ~ a s h i n g t o n , D.C., 874 pp.

Atlantic Richfield Hanford Company. 1975 and 1976. Weekly Analytical Report of Radiation Monitoring samples ARHCO 222-S ~nalytical Reports, Atlantic Richfield Hanford Co., Richland, WA.

Blumer, P., P., J. J. Fix and D. R. Speer. 1976. Environmental Surveillance at Hanford for CY-1975 Data. BNWL-1980, Battelle, Pacific Northwest Laboratories, Richland, WA.

Carlander, K. D. 1955. The standing crop of fish in lakes. Jour. Fish Res. Bd. Can. - 12:543-570.

Cucch iara, A. L. 1976. 1975 Environmental Release Report. United Nuclear Industries Inc. Reactor and Fuel Production Facilities, UNI-544. NTIS, Springfield, VA.

Egloff, D. A. and W. H. Brakel. 1973. Stream pollution and a simplified diversity index. J. Water Pollution Control Fed., - 45:2269-2275.

Eisenbud, M. 1973. Environmental Radioactivity. 2nd ed., Academic Press, New York.

Emery, R. M., C. E. Moon and E. B. Welch. 1973. Enriching effects of urban runoff on the productivity of a mesotrophic lake. Water Res. - 7:1506-1516.

Emery, R. M. and T. R. Garland. 1974. The Ecological Behavior of Plutonium and Americium in a Freshwater Ecosystem: Phase I1 Implications of Differences in Transuranic Isotopic Ratios. BNWL-1879, Battelle, Pacific Northwest Laboratories, Richland, WA, 26 pp.

Emery, R. M., D. C. Klopfer, T. R. Garland .and W. C. Weimer. 1976. The ecological behavior of plutonium and americium in a freshwater pond. - In: Radioecology and Energy Resources, Proc. Fourth National Symposium on Radioecology, Corvallis, Oregon 12-14 May, 1975. (C. E. Cushing, ed.) pp 74-85. Halsted Press, New York.

Emery, R. M., D. C. Klopfer and M. C. McShane. 1978. The ecological export of plutonium from a reprocessing waste pond. Health Phys. - 34:255-269.

Hester, F. E. and J. S. Dendy. 1962. A multiple-plate sampler for aquatic macroinvertebrates. Trans. American Fisheries Soc., - 91:420-421.

I n t e r n a t i o n a l Atomic Energy Agency. 1976. E f f e c t s o f I o n i z i n q R a d i a t i o n on Aqua t i c Organisms and Ecosystems. IAEA Tech. Rep. S e r i e s No. 172., IAEAIVienna.

Page, T. L. and D. A. N e i t z e l . 1978. Aqua t i c E c o l o g i c a l S t u d i e s Conducted Near WlVP 1, 2 and 4, January 1977 th rough December 1977. B a t t e l l e , P a c i f i c Northwest L a b o r a t o r i e s t o U n i t e d Engineers and C o n s t r u c t o r s f o r Washinqton P u b l i c Power Supply System, Vol . 5 sec. 4, WPPSS, Rich land, WA. ( i n ~ r e s s ) .

P ie lou , E. C. 1967. The use o f i n f o r m a t i o n t h e o r y i n t h e s t u d y o f d i v e r s i t y o f b i o l o g i c a l p o p u l a t i o n s . I n : Proc. 5 t h B e r k e l e y Symp. on Math. S t a t . and Prob. vd 4, pp 163-177. u n i v e r s i t y o f C a l i f o r n i a , Berke ley , CA.

Po l i ka rpov , G. G. 1966. Radioecology o f Aqua t i c Organisms. N o r t h - H o l l a n d Pub. Co. - Amsterdam and Re inho ld Book Div., New York.

Robbins, W. W., T. E. Weier and C. R. S tock ing. 1957. Botany: An I n t r o d u c t i o n t o P l a n t Science, John W i l e y and Sons, Inc., New York. 204 pp.

S t r i c k l a n d , J. D. H. and T. R. Parsons. 1972. A P r a c t i c a l Handbook o f Seawater A n a l y s i s . 2nd ed., B u l l . F i sh . Res. Bd. Can. Ottawa, 309 pp.

Verduin, J. 1964. P r i n c i p l e s o f p r i m a r y p r o d u c t i v i t y : Pho tosyn thes is under c o m p l e t e l y n a t u r a l c o n d i t i o n s ; I n : Algae and Man, (D. F. Jackson, ed.) 221-228. Plenum Press, New ~ork.

Whicker, F. W. and L. F ra ley , J r . 1974. E f f e c t s o f i o n i z i n g r a d i a t i o n on t e r r e s t r i a l p l a n t communnties. Adv. Rad ia t . B i o l . 4:317-366.

Wilhm, J. L. 1970. Range o f d i v e r s i t y index i n b e n t h i c m a c r o i n v e r t e b r a t e p o p u l a t i o n s . J. Water P o l l u t i o n C o n t r o l Fed., P t . 2):R221-R224.

Wilhm, J. L. and T. C. D o r r i s . 1966. Species d i v e r s i t y o f b e n t h i c m a c r o i n v e r t e b r a t e s i n a stream r e c e i v i n g domest ic and o i l r e f i n e r y e f f l u e n t s . The American M id land N a t u r a l i s t , - 76:427-449.

APPENDIX A

METHODS AND M A T E R I A L S

PHYSICAL PARAMETERS

Th is s tudy was conducted f rom November 1975 t o June 1977.

P lanar measurements o f ponds and streams were made u s i n g a e r i a l

photographs and ground-based l i n e a r i n d i c a t o r s . Volumes o f ponds were

determined f rom sur face measurements and depth sounding da ta taken a long

t r ansec t s . Hyd rau l i c r e t e n t i o n t imes f o r ponds were determined by d i v i d i n g

t h e volume of t he pond by t h e mean stream i n f l ow r a t e . Stream f low

measurements were made u s i n g a General ~ c e a n i c s ( ~ ) c u r r e n t meter p laced a t

r e g u l a r i n t e r v a l s across t h e stream. V e l o c i t y readings were i n t e g r a t e d

across t he v e r t i c a l p lane of t h e t r a n s e c t t o determine r a t e of f l ow i n t h e

stream. Temperatures were mon i to red w i t h Foxboro thermographs. I n s o l a t i o n

d a t a were obta ined f rom the Atmospheric Sciences Department o f

Ba t te l le -Nor thwes t . Seston concen t ra t i ons were determined by f i l t e r i n g

known volumes o f water through pre-weighed g lass pads (0.11.1) and then

weigh ing t h e des icca ted pads and res idue . Sedimentat ion r a t e s were e i t h e r

c a l c u l a t e d from seston concen t ra t i ons and water budget da ta o r measured

d i r e c t l y us i ng sedimentat ion pans.

CHEMICAL PARAMETERS

Measurements o f pH were made us i ng a Leeds & Nor th rup (Model No. 7417)

pH meter. D isso lved oxygen was measured w i t h YSI (Model 51A) DO-temperature

probe and meter. A l k a l i n i t y and hardness were determined by t i t r a t i o n

methods descr ibed by APHA e t a l . (1976). C o n d u c t i v i t y was measured us i ng an

I n d u s t r i a l Ins t rument Model RC-16B c o n d u c t i v i t y b r idge .

N i t r a t e and n i t r i t e n i t r o g e n concen t ra t i ons were determined by t h e

cadmium-copper r educ t i o n method ( S t r i c k land and Parsons, 1972). Ammonia and

n i t r o g e n were measured us i ng t h e n e s s l e r i z a t i o n technique (APHA e t al.,

1976). Concent ra t ions o f o r t ho - and t o t a l phosphates and t o t a l r e a c t i v e

s i 1 i c a t e s were determined by t h e molybdate complexing r e a c t i o n ( S t r i c k l and

and Parsons, 1972).

( a ) ~ s e o f t r ade names does no t imp l y p roduc t endorsement by PNL o r DOE.

BIOLOGICAL PARAMETERS

Pond-wide p r i m a r y p r o d u c t i v i t y , determined f o r U-Pond on ly , was

es t ima ted u s i n g a method desc r ibed b y Verduin ( 1964) which accounts f o r t h e

pho tosyn thes is o f a l l p l a n t l i f e i n t h e pond p e r u n i t t i m e and i s i n c l u s i v e

o f phytop lankton, macroalgae, and submerged macrophytes. R e s u l t s o f these

measurements express t h e n e t r a t e o f carbon a s s i m i l a t e d by p l a n t s .

Rates o f p e r i p h y t o n c o l o n i z a t i o n ( h e r e i n r e f e r r e d t o as " c o l o n i z a t i o n

p r e s s u r e " ) were e s t i m a t e d by measur ing t h e maximum r a t e s o f c h l o r o p h y l l a

accumulat ion on a 6.5 cm2 g lass s u b s t r a t e o v e r 4-week p e r i o d s . C h l o r o p h y l l - a

was ana lyzed f l u o r o m e t r i c a l l y u s i n g t h e procedure desc r ibed by S t r i c k l a n d

and Parsons (1972) .

To determine t h e c o l o n i z a t i o n p ressure o f t h e i n v e r t e b r a t e p o p u l a t i o n s ,

c o l o n i z a t i o n r a t e s o f s e s s i l e i n v e r t e b r a t e s were measured u s i n g l u c i t e

s u b s t r a t e s . Subs t ra te des ign resembled a Dendy t r a p (Hes te r and Dendy,

1962) b u t was c o n s t r u c t e d i n t h e f o r m o f a c y l i n d e r o f 0.64 cm (1 /4 i n . )

t h i c k c i r c u l a r l u c i t e p l a t e s a l t e r n a t i n g between d iameters o f 7.5 cm and

2.0 cm. A complete u n i t i n c l u d e d 7 l a r g e and 6 smal l p l a t e s , p r o v i d i n g a 2 c o l o n i z i n g su r face area o f 886 cm . Nurrlbers o f m a c r o i n v e r t e b r a t e s

(minimum l e n g t h o f 2 mm) appear ing on these s u b s t r a t e s i n 1-week i n t e r v a l s

over a p e r i o d o f 4 weeks p rov ided an e s t i m a t e o f c o l o n i z a t i o n p ressure o r

p o t e n t i a l .

G o l d f i s h p r o d u c t i o n was es t ima ted f o r U-Pond o n l y . Since t h e g o l d f i s h

p o p u l a t i o n appears t o reproduce a n n u a l l y and undergoes s u b s t a n t i a l d e p l e t i o n

i n t h e c o l d e r months, a v a l i d express ion o f annual p r o d u c t i o n can be based

on t h e summer s t a n d i n g crop. T h i s s t a n d i n g c rop was e s t i m a t e d by f i r s t

e s t a b l i s h i n g an average we igh t f o r an i n d i v i d u a l and then c o u n t i n g numbers

o r i n d i v i d u a l s appear ing i n 125 g r i d s p laced randomly about t h e pond. Each 2 g r i d had an area o f 9 m . The mean nurr~ber o f i n d i v i d u a l s was conver ted t o

mean we igh t p e r u n i t area and p r o p o r t i o n e d t o t h e e n t i r e pond area.

The e c o l o g i c a l c o m p l e x i t y and s t a b i l i t y o f m a c r o i n v e r t e b r a t e

communit ies were assessed u s i n g t h e d i v e r s i t y express ion d e f i n e d by Shannon

( P i e l o u , 1967). Community d i v e r s i t y , expressed as p e r i n d i v i d u a l , was

c a l c u l a t e d u s i n g t h e equa t ion

where n i s t he number o f i n d i v i d u a l s i n taxon s ( r i chness ) , and N i s t he

t o t a l number of i n d i v i d u a l s i n t h e sample. The f a m i l y l e v e l o f taxonomic

i d e n t i f i c a t i o n i s used t o s p e c i f y s (see f oo tno te on p. 24). The evenness

( J ' ) w i t h which t h e i n d i v i d u a l s are d i s t r i b u t e d among t h e t a x a i s expressed

us ing t he equat ion

where

- (i l o g 2 T ) s 'max

- - N

and ii i s the average o f i n d i v i d u a l s per taxon.

These d i v e r s i t y i n d i c e s were e s t a b l i s h e d by c o l l e c t i n g macro-

i n v e r t e b r a t e s f rom bo th s ides o f 1 m2 b u r l a p sheets submerged a t a s tudy

s i t e f o r 1 month. ( I t was n o t p o s s i b l e t o c o l l e c t s u f f i c i e n t numbers and

v a r i e t i e s o f i n v e r t e b r a t e s from n a t u r a l subs t ra tes i n these aqua t i c

sys tems . ) C o l l e c t i o n s o f algae f o r taxonomic i d e n t i f i c a t i o n were made f rom t h e

same g lass subs t ra tes t h a t were used f o r c h l o r o p h y l l 2 determinat ions.

Macrophytes c o l l e c t e d d i r e c t l y f rom the s tudy s i t e s represen t o n l y t he most

f r e q u e n t l y occu r r i ng aqua t i c and r i p a r i a n vege ta t ion .

RADIOLOGICAL PARAMETERS

Ranges o f f i l t e r a b l e and p a r t i c u l a t e a and B c o n c e n t r a t i o n s i n t h e

water o f these s t u d y s i t e s (excep t 100-N t r e n c h ) were determined f rom week ly

a n a l y t i c a l l a b o r a t o r y r e p o r t s p r o v i d e d by t h e A t l a n t i c R i c h f i e l d Hanford

Company (ARHCO, 1975-76). Samples o f water were c o l l e c t e d r o u t i n e l y a t

ARHCO's env i ronmenta l m o n i t o r i n g s t a t i o n s , f i l t e r e d through a 0.45 p

membrane f i l t e r , and b o t h f i l t r a t e and r e s i d u e were ana lyzed b y a and B

spectroscopy. T o t a l ( i .e., gross) B ana lyses measured B emiss ions f rom b o t h

pure B e m i t t i n g and f 3 - Y e m i t t i n g i so topes . C a l c u l a t i o n s o f t o t a l B

c o n c e n t r a t i o n s are based on a h y p o t h e t i c a l , n o n v o l a t i l e i s o t o p e h a v i n g a

long h a l f - l i f e and a 6 end-po in t energy o f 0.3 MeV. The r e f e r e n c e i s o t o p e

f o r these c a l c u l a t i o n s i s 6 0 ~ o . Concen t ra t ions o f a and 6 a c t i v i t y i n

100-N t r e n c h were determined i n t h e same way on a month ly b a s i s b y U n i t e d

Nuc lear I n d u s t r i e s and r e p o r t e d by Cucchiara (1976). Dose r a t e s were

determined a t t h e sediment water i n t e r f a c e u s i n g thermoluminescent L i F 2

dos imeters (PLD I s ) . Thermoluminescence was measured w i t h a Harshaw Model

2000A ana lyzer coupled t o a C I Model 1491 coun te r .

APPENDIX B

DETA ILED H ISTORICAL AND ECOLOGICAL DESCRIPTIONS OF HANFORD PONDS AND STREAMS

GABLE POND

Gable Pond l i e s t o t h e sou th o f Gable Mounta in i n t h e 200-North Area

and i s t h e l a r g e s t o f t h e Hanford ponds ( F i g u r e s 1 and 2) . I t was c r e a t e d

i n 1957 t o r e c e i v e c o o l i n g water f r o m a Purex P l a n t i n t h e 200-East Area

where r e a c t o r f u e l s were processed. I t c o n t a i n s l o w - l e v e l q u a n t i t i e s of

a c t i n i d e s and mixed f i s s i o n p r o d u c t s (<50 pCi /ml ) which e n t e r e d t h e pond i n

1964 f o l l o w i n g a r u p t u r e i n t h e c o o l i n g c o i l s a t t h e Purex P l a n t .

Gable Pond has a s u r f a c e a rea o f 287,300 m2 (71 a c r e s ) , a mean dep th

of 1.5 m ( 4 . 9 f t ) , and a volume o f 431,000 m3 (350 a c r e - f t , Tab le 1 ) . I t

r e c e i v e s w a t e r f rom t h e Purex P l a n t th rough a p i p e l i n e a t a mean r a t e o f

14 m3/min (3,700 ga l /m in ) . I t s r e t e n t i o n t i m e i s a p p r o x i m a t e l y 500 h r

(Tab le 1 ) . Water l eaves t h e pond m a i n l y th rough p e r c o l a t i o n , b u t when t h e

pond l e v e l r i s e s , w a t e r may e x i t v i a a s p i l l w a y a t i t s n o r t h w e s t end.

Most a l g a l forms i n Gable Pond a re p e r i p h y t i c and a r e r e p r e s e n t e d by

numerous f a m i 1 i e s o f b lue-green a lgae (Cyanophyta) , green a lgae

(Ch lo rophy ta ) and d ia toms (Chrysophyta, Tab le 2 ) . Eug leno id algae,

d i n o f l a g e l l a t e s and Cryptomonads were n o t detec ted. T h i s p e r i p h y t o n 2

p o p u l a t i o n c o l o n i z e d a ba re s u b s t r a t e a t a mean r a t e o f 48 u g Chl - a/m p e r

day, wh ich i s e q u i v a l e n t t o t h o s e r a t e s i n B-Pond and U-Pond b u t h i g h e r t h a n

t h a t o f West Pond ( T a b l e 3) .

The submerged v a s c u l a r p l a n t , pondweed (Potamogeton), ho rnwor t

(Cera tophy l luni), and wa te r ~iii l f o i 1 ( M y r i o p h y l lum), grow l u x u r i a n t l y i n Gable

Pond ( T a b l e 4 ) . C a t t a i l s (Typha) and b u l r u s h e s ( S c r i p u s ) a l s o appear i n

l a r g e s tands i n t h e s h a l l o w e r r e g i o n s ( F i g u r e 2 ) . W i l l o w s ( S a l i x ) and

cot tonwoods (Populus) a r e a l s o found a t one l o c a t i o n o f t h e pond 's

p e r i m e t e r . Gable Pond has c o n s i d e r a b l y more o f i t s bo t tom s u r f a c e covered

w i t h macrophytes (>50%) t h a n o t h e r Hanford ponds ( ~ 5 0 % ) .

T h i s pond suppor ts a common v a r i e t y o f i n v e r t e b r a t e l i f e i n c l u d i n g

f la tworms, leeches and segmented worms, c rus taceans, s n a i 1s and numerous

fami l i e s o f i n s e c t s ( T a b l e 5 ) . Among these i n v e r t e b r a t e s t h e w a t e r f l e a

Daphnia, t h e scud H y a l e l la , t h e predaceous d r a g o n f l y Aeschna, and t h e s n a i l

Lymnaea a re o f n o t a b l y l a r g e abundance. T h i s i n v e r t e b r a t e p o p u l a t i o n

c o l o n i z e d a ba re s u b s t r a t e ( l u c i t e ) a t a mean r a t e o f 1020 organisms/m 2

p e r day, wh ich was t h e h i g h e s t among ponds ( T a b l e 3 ) . When a l l owed t o 2 c o l o n i z e 2 m o f a t e x t i l e ( b u r l a p ) s u b s t r a t e f o r 4 weeks, t h i s p o p u l a t i o n

produced an average o f 245 i n d i v i d u a l s , r e p r e s e n t i n g 8 f a m i l i e s . These d a t a

p r o v i d e d a mean community d i v e r s i t y i ndex of 2.1 (HI , Tab le 3) , wh ich was

e q u i v a l e n t t o t h a t o f U-Pond and h i g h e r t h a n those o f t h e o t h e r ponds. The

evenness index ( J ' , Tab le 3), which expresses how e v e n l y t h e i n d i v i d u a l s

were d i s t r i b u t r e d among t h e f a m i l i e s on a 0 t o 1.0 bas is , i n d i c a t e s t h a t t h e

i n v e r t e b r a t e s i n Gable Pond were modera te l y w e l l d i s t r i b u t e d among t h e

f a m i l i e s ( J ' = 0.6) . T h i s i s e q u i v a l e n t t o t h e evenness found i n B-Pond b u t

h i g h e r t h a n t h a t o f U-Pond and lower t h a n t h a t o f West Pond.

Data f o r a l l o f t h e s e parameters i n d i c a t e t h a t Gable Pond has a

modera te l y complex taxonomic s t r u c t u r e i n i t s i n v e r t e b r a t e p o p u l a t i o n and

suggests t h a t t h e assoc ia ted communit ies a r e r e l a t i v e l y s t a b l e and c o u l d

w i t h s t a n d a t l e a s t m i n o r f o r c e s o f p e r t u r b a t i o n .

I n a d d i t i o n t o t h e i n v e r t e b r a t e s , Gable Pond a l s o has a g o l d f i s h

p o p u l a t i o n (Carass ius ) of undetermined s i z e . T h e i r o r i g i n i s n o t known, b u t

we assume t h a t t h e y were p laced t h e r e by Hanford workers b e f o r e 1970.

WEST POND

West Pond a l s o l i e s i n t h e smal l v a l l e y sou th o f Gable Mountain i n t h e

200-North Area b u t a t a lower e l e v a t i o n ( F i g u r e s 1 and 2 ) . A t t h i s l o c a t i o n

ground water has s u r f a c e d i n response t o t h e l a r g e q u a n t i t i e s o f r i v e r wa te r

t r a n s p o r t e d i n t o t h e area. I t f i r s t appeared i n 1957. West Pond has an 3 approx imate volume o f 31,000 m (25 a c r e - f t ) , s u r f a c e a rea o f about

79,000 rn2 ( 1 9 acres) , and a mean depth o f l e s s t h a n a meter ( T a b l e 1 ) . A

water budget f o r West Pond has n o t been determined, b u t e v a p o r a t i v e l o s s i s

an i m p o r t a n t water o u t f l o w r o u t e . Dur ing i t s s h o r t h i s t o r y , e v a p o r a t i o n has

c o n c e n t r a t e d and p r e c i p i t a t e d s o l u b l e s a l t s which a r e i n d i c a t e d b y e l e v a t e d

a l k a l i n i t y , hardness and c o n d u c t i v i t y ( T a b l e 1 ) . T h i s has l e f t a l a r g e

a l k a l i s a l t r e s i d u e a t t h e pond 's p e r i m e t e r ( F i g u r e 2 ) . Because o f t h e

r a p i d p e r c o l a t i v e r a t e s i n Hanford vadose zones ( t h e zone between ground

s u r f a c e and ground wa te r ) , e v a p o r a t i v e l o s s f rom o t h e r ponds i s q u i t e s m a l l

when compared t o p e r c o l a t i v e losses. U-Pond, f o r example, l oses < 5% o f i t s

i n f l ow ing w a t e r by e v a p o r a t i o n (Emery e t a l . , 1976).

Al though e l e v a t e d c o n c e n t r a t i o n s o f r a d i o n u c l i d e s have been d e t e c t e d i n

West Pond, i t i s n o t used as a waste h a n d l i n g f a c i l i t y . I t i s p o s s i b l e t h a t

n a t u r a l l y o c c u r r i n g r a d i o n u c l i d e s i n t h e Columbia R ive r , t r a n s p o r t e d t o t h e

waste pond system i n t h e 200-Area p la teau , have c o n t r i b u t e d t o t h e p o n d ' s

r a d i o a c t i v i t y th rough g radua l e v a p o r a t i v e c o n c e n t r a t i o n . A t one t i m e i n i t s

e a r l y h i s t o r y , s ludge f rom l a t r i n e s was dumped i n t o t h e depress ion now

f l o o d e d by West Pond. T h i s p r o b a b l y e x p l a i n s t h e e l e v a t e d c o n c e n t r a t i o n s o f

ammonia n i t r o g e n and phosphorus (Tab le 1) .

I n s p i t e o f i t s h i g h c o n d u c t i v i t y and unusual c o n c e n t r a t i o n s o f

n i t r o g e n , phosphorus, hardness and a l k a l i n i t y , West Pond has an assor tment

o f a lgae t h a t r o u g h l y resembles t h a t o f t h e o t h e r Hanford Ponds ( T a b l e 2 ) .

T h i s a l g a l p o p u l a t i o n i s comprised m a i n l y o f p e r i p h y t i c d ia toms and

b lue-green algae. The green a lgae a r e l e a s t abundant i n West Pond, r e l a t i v e

t o t h e o t h e r Hanford ponds. The v a r i e t y o f a l g a l l i f e i n West Pond i s

r e l a t i v e l y broad, c o n t a i n i n g t h e r a r e r forms such as eug leno ids ,

d i n o f l a g e l l a t e s , and cryptomonads. West Pond's p e r i p h y t o n p o p u l a t i o n does

n o t appear t o be as l a r g e o r as a c t i v e as those o f t h e o t h e r ponds, 2 however. Mean p e r i p h y t o n c o l o n i z a t i o n p ressure (17 ug Chl - a/cm p e r day,

Tab le 3) was lowes t among a1 1 Hanford Ponds. The macrophyte p o p u l a t i o n

appear ing i n West Pond i s a l s o v e r y s m a l l and l i m i t e d t o a few s tands o f

c a t t a i l s and b u l r u s h e s ( F i g u r e 2 and Tab le 4 ) .

The severe chemical c o n d i t i o n s and l a c k o f submerged v e g e t a t i o n i n West

Pond appear t o l i m i t t h e v a r i e t y o f i n v e r t e b r a t e s t h a t l i v e t h e r e . Only

o l i g o c h a e t e s and s e v e r a l f a m i l i e s o f i n s e c t s i n h a b i t t h i s pond (Tab le 5 ) .

The o l i g o c h a e t e s t h r i v e i n t h e s e p t i c sediments, a long w i t h t h e l a r v a e of

t h e d a m s e l f l y ( I schnura ) , c a d d i s f l y ( T r i c o p t e r a ) , midge (Chironomidae) and

s h o r e f l y (Ephydr idae) . Backswimmers (No tonec t idae) and wa te r boatmen * ( C o r i x i d a e ) a re a l s o found i n West Pond.

I T h i s p o p u l a t i o n o f i n v e r t e b r a t e s has t h e lowes t mean c o l o n i z a t i o n r a t e 2 among those i n Hanford ponds and streams (188 organisms/m p e r day,

, Table 3 ) . The d i v e r s i t y i n d i c e s a re a l s o t h e lowes t among a l l ponds

(Tab le 3 ) . An average o f o n l y 4 f a m i l i e s were rep resen ted by a mean of 168

organisms c o l o n i z i n g a 4 m2 t e x t i l e s u b s t r a t e i n 1 month. . These d a t a

,produced a mean community d i v e r s i t y index ( H I ) o f 1.2 and a mean evenness

index ( J ' ) o f 0.5. S ince d a t a f o r these parameters a r e lowes t among ponds,

t h e y suggest t h a t t h e c o m p l e x i t y o f t h i s i n v e r t e b r a t e p o p u l a t i o n has been

reduced by t h e unusua l chemica l c o n d i t i o n s and t h a t t h e a s s o c i a t e d

communit ies have exper ienced r e p r e s s i o n i n t h e i r normal success iona l

p a t t e r n s . T h i s a l s o suggests t h a t t.he community s t r u c t u r e and s t a b i l i t y i s

r e l a t i v e l y reduced i n t h e West Pond ecosystem.

There are no f i s h i n West Pond.

B-POND, B-3 AND A-29 DITCHES

B-Pond was c r e a t e d i n 1945 t o r e c e i v e c o o l i n g water f r o m B-Plant i n t h e

200-East Area where waste s t r o n t i u m and cesium were separa ted f r o m spent

f u e l e lements and encapsu la ted ( F i g u r e s 1 and 3 ) . I t a l s o r e c e i v e d c o o l i n g

wa te r f rom t h e Purex P l a n t . L i k e Gable Pond, i t c o n t a i n s s m a l l amounts o f

a c t i n i d e s and mixed f i s s i o n p roduc ts . These n u c l i d e s reached 6-Pond f r o m a

r u p t u r e i n t h e c o o l i n g c o i l s a t t h e Purex P l a n t i n 1964, and a l s o f r o m t h e

B-Plant i n 1973 f o l l o w i n g an a c c i d e n t a l s p i l l o f s t r o n t i u m b e a r i n g wastes.

0-Pond has a s u r f a c e area o f approx ima te ly 150,000 m' (37 ac res ) , a 3 volume o f about 233,000 m ( 190 a c r e - f t ) , and a mean dep th o f 1.6 m

(5.2 ft, Tab le 1, F i g u r e 3 ) . I t s mean h y d r a u l i c r e t e n t i o n t i m e i s 424 h r , 3 w i t h an i n f l o w r a t e o f about 10 m /min (2,600 ga l /m in ) v i a B-3 and A-29

d i t c h e s ( F i g u r e 3 ) . As t h e r e a re no sur face o u t f l o w s f r o m t h e pond,

p e r c o l a t i o n , ma in l y , and e v a p o r a t i v e l o s s a r e t h e o n l y o u t f l o w i n g r o u t e s .

Algae appear ing i n B-Pond are a l s o p redominan t l y p e r i p h y t i c and s i m i l a r

t o those i n Gable Pond ( T a b l e 2 ) . Fami 1 i e s of cyanophytes, c h l o r o p h y t e s ,

and diatoms a re w e l l rep resen ted i n B-Pond b u t t h e e u g l e n o i d s and

d i n o f l a g e l l a t e s a r e absent. Cryptomonads appear i n B-Pond, as w e l l as i n

U-Pond and West Pond.

P e r i p h y t o n grew on a ba re s u b s t r a t e a t a mean r a t e o f 73 ug Chl a/cm 2 -

p e r day, wh ich i s t h e h i g h e s t r a t e among ponds, b u t s i m i l a r t o those of

Gable Pond and U-Pond.

B-Pond i s s p a r s e l y popu la ted w i t h v a s c u l a r p l a n t s ( T a b l e 4 ) . I t has a

few s tands o f c a t t a i l s and b u l r u s h e s ( F i g u r e 3 ) and i t s pondweed p o p u l a t i o n

i s r e l a t i v e l y sma l l .

The i n v e r t e b r a t e p o p u l a t i o n o f B-Pond resembles those o f Gable Pond and

U-Pond (Table 5 ) . Flatworms, segmented worms, crustaceans, i n s e c t s and

s n a i l s are a l l represented. Among these, scuds and water boatmen are

p a r t i c u l a r l y abundant. Our sarr~pl ing a l s o i n d i c a t e s t h a t predaceous

d ragon f l y l a r vae a re no t as abundant as i n Gable Pond o r U-Pond. Th is i s

l i k e l y due t o t h e lack o f submerged vascu la r p l a n t m a t e r i a l t h a t c o u l d

p rov i de a h a b i t a t s u i t a b l e f o r these l a r g e r i n s e c t s t h a t r e q u i r e l o c a l i z e d

concen t ra t i ons o f p rey f o r s a t i s f a c t o r y f eed ing c o n d i t i o n s . The

i n v e r t e b r a t e p o p u l a t i o n co l on i zed a bare subs t ra te a t a mean r a t e o f 777 2 organisms/m per day (Tab le 3 ) . Th is i s l ess than t h e c o l o n i z a t i o n r a t e

i n Gable Pond b u t more than those i n U-Pond o r West Pond.

I n sampl ing f o r community d i v e r s i t y data, an average o f 7 f a m i l i e s o f

i n v e r t e b r a t e s were represented by a mean o f 295 i n d i v i d u a l s c o l o n i z i n g a

t e x t i l e subs t ra te i n 1 month. Th is produced a mean H ' o f 1.7 which i s lower

than those f o r Gable Pond and U-Pond b u t h i ghe r than t h a t o f West Pond. The

evenness o f taxonomic d i s t r i b u t i o n (mean J ' = 0.6) i s e q u i v a l e n t t o Gable

Pond b u t lower than U-Pond and h i ghe r than West Pond. These d i v e r s i t y

express ions suggest t h a t B-Pond has a r e l a t i v e l y s t a b l e i n v e r t e b r a t e

p o p u l a t i o n and t h a t t h e assoc ia ted communit ies a re modera te ly f l e x i b l e t o

changes t h a t i n f l u e n c e aqua t i c ecosystems.

B-Pond a l s o has a smal l p o p u l a t i o n o f g o l d f i s h o f undetermined s ize .

B-3 d i t c h (F i gu re 3 ) c a r r i e s c o o l i n g water t o B-Pond f rom t h e

encapsu la t ion f a c i l i t y . Th is d i t c h was m o d i f i e d i n 1973 f o l l o w i n g an

acc i den ta l s p i l l o f s t r on t i um bea r i ng wastes. The o r i g i n a l d i t c h was

b a c k f i l l e d and t h e p resen t B-3 d i t c h has n o t had a con tamina t fon event. B-3

d i t c h i s about 1,200 m (4000 f t ) long, w i t h a maximum depth o f (1 m (<3 f t ) 3 and a mean f l o w r a t e o f 11 m /min (6.3 c f s , Table 6 ) .

A-29 d i t c h c a r r i e d chemical sewer wastes and c o o l i n g water f rom t h e

200-East Area i n t o B-Pond v i a t h e lower t h i r d o f B-3 d i t c h (F i gu re 3 ) . I t

was formed i n 1955 t o c a r r y chemical waste water f rom t h e Purex P lan t . I n

1972, a l l purex l a b o r a t o r y d r a i n s were re rou ted and A-29 d i t c h now rece i ves

m o s t l y condenser c o o l i n g water f rom an a c i d f r a c t i o n a t o r w i t h occas iona l

pu lses o f waste chemicals. A-29 d i t c h i s approx imate ly 1,300 m (4,250 f t )

long, hav ing a maximum depth o f (0.5 m ((2 f t ) and a mean f l o w r a t e o f

1.5 m3/min (0.9 c f s , Table 6 ) .

Both o f these streams have chemical c o n d i t i o n s t h a t a re s i m i l a r t o

B-Pond ( t h e r e c e i v i n g body) and Gable Pond, a1 though t h e ammoni a - n i t rogen

concen t ra t i ons i n Gable Pond are lower (Tables 1 and 6 ) . A-29 d i t c h ,

however, i s known t o o c c a s i o n a l l y r e c e i v e wastes c o n t a i n i n g o i l s and s t r ong

c a u s t i c s and co r ros i ves .

B-3 and A-29 d i t c h e s have r e l a t i v e l y d i ve r se a l g a l popu la t i ons a l though

B-3 d i t c h appears t o be r i c h e r i n v a r i e t y than A-29 d i t c h (Tab le 2 ) . Both

a l g a l popu la t i ons appear t o be per i p h y t i c i n na tu re and a re composed m a i n l y

o f cyanophytes, ch lo rophy tes , and diatoms. Ne i t he r system appears t o have

euglenoids o r d i n o f l a g e l l a t e s , b u t bo th show appearances o f cryptomonads.

The r a t e s o f pe r i phy ton c o l o n i z a t i o n i n these streams a re q u i t e

d i f f e r e n t (Tab le 3 ) . B-3 d i t c h has t h e h i g h e s t mean r a t e o f c h l o r o p h y l l - a

accumulat ion on a bare s u b s t r a t e o f a l l Hanford systems san~pled (87 pg Chl 2 a/cm per day), w h i l e A-29 d i t c h has t he lowest ( 6 pg Chl -

day

The popu la t i ons o f macrophytes i n these streams a re l i m i t e d t o

c a t t a i 1 s, bu l rushes and speedwell (Veron ica ) , and seve ra l cot tonwood t r e e s

appear a long A-29 d i t c h (Tab le 4 ) . The reduced per i phy ton and macrophyte

p roduc t i on i n A-29 d i t c h may be assoc ia ted w i t h t he chemical na tu re o f

wastes t h a t en te r i t i n t e r m i t t e n t l y . Th is d i t c h f r e q u e n t l y r ece i ves

e f f l u e n t s c o n t a i n i n g caus t i c s , co r ros ives , o i l s , and o rgan i c compounds which

appear t o l i m i t t he forms o f aqua t i c l i f e . On severa l occasions, we

observed o i l c o a t i n g t h e su r faces o f ou r sampl ing devices.

These o c c a s s i o n a l l y harsh chemical c o n d i t i o n s i n A-29 d i t c h a l s o appear

t o l i m i t t h e i n v e r t e b r a t e p o p u l a t i o n (Tab le 5 ) . Midge l a r v a e a re t h e o n l y

i n v e r t e b r a t e s t h a t appear i n abundance, however, f la tworms, o l igochae tes ,

water s t r i d e r s , and b l ack f l y l a r vae were a l s o observed. Th i s i n v e r t e b r a t e 2 popu la t i on shows a r e1 a t i v e l y low c o l o n i z a t i o n r a t e (275 organisms/m pe r

day, Table 3) and at tempts t o use t e x t i l e subs t ra tes t o c o l l e c t

i n v e r t e b r a t e s f o r d i v e r s i t y index de te rmina t ions were unsuccessfu l .

B-3 d i t c h , however, has a r e l a t i v e l y v a r i e d i n v e r t e b r a t e p o p u l a t i o n

(Table 5 ) . We have observed rep resen ta t i ves o f f la tworms, 01 igochaetes,

crustaceans, and a v a r i e t y o f i n s e c t s i n t h i s stream. The i n s e c t p o p u l a t i o n

inc ludes an abundance o f midge larvae, a long w i t h w a t e r s t r i d e r s , predaceous

d i v i n g bee t les , and l a r vae o f d ragon f l i e s , damse l f l i e s , c a d d i s f l i e s , and

aqua t i c c a t e r p i l l e r s . Go ld f i sh a l s o appear i n B-3 d i t c h .

Th is i n v e r t e b r a t e p o p u l a t i o n shows t he most r a p i d mean c o l o n i z a t i o n 2 r a t e among t he s tudy s i t e s (1610 organisms/m p e r day, Table 3 ) . However,

i t appears t h a t midge l a r vae a re r espons ib l e f o r most o f t h e c o l o n i z a t i o n

pressure. I n sampl ing t o determine d i v e r s i t y ind ices , we found m o s t l y

chironomids c o l o n i z i n g t h e t e x t i l e subs t ra te , produc ing a v e r y low mean H'

o f 0.1 (Table 3 ) . The mean evenness index f o r 8-3 d i t c h ( J ' = 0.04) a l s o

i n d i c a t e s t h a t t h e i n v e r t e b r a t e s appear ing on t h e s u b s t r a t e (mean N = 5964)

were d i s p r o p o r t i o n a t e l y d i s t r i b u t e d amoug t h e f a m i l i e s (mean s = 6 ) .

U-POND AND Z-19 DITCH

From a r a d i o e c o l o g i c a l p o i n t o f view, U-Pond i s t he most i n t e r e s t i n g

aqua t i c system a t Hanford. I t was formed i n 1944 i n t h e southwest co rne r o f

t he 200-West Area (F i gu re 1 and 4 ) . Th is pond was developed t o r e c e i v e

waste water f rom p lu ton ium process ing and rec l ama t i on f a c i l i t i e s , a laundry,

a uranium recove ry p l a n t , and severa l o t he r suppo r t i ve f a c i l i t i e s i n t he

200-West Area. P lu ton ium and uranium process ing ope ra t i ons have used a

s e r i e s o f Z -d i t ches t o r e c e i v e t h e i r e f f l u e n t s . Z-19 d i t c h i s p r e s e n t l y

s e r v i n g these l a b o r a t o r i e s which have reduced t h e i r ope ra t i ons i n r ecen t

years (F i gu re 4 ) . The laundry, where p r o t e c t i v e c l o t h i n g i s cleaned,

d ischarges i n t o U-Pond v i a U-14 d i t c h . I n 1974, U-Pond began r e c e i v i n g

c o o l i n g water f rom an e v a p o r a t o r - c r y s t a l l i z e r p l a n t v i a U-14 d i t c h . Th is

source now c o n s t i t u t e s ~ 8 0 % o f U-Pond ' s water supp ly (Emery e t a l . , 1976).

2 U-Pond has a su r face area o f approx imate ly 57,000 m (14 acres) , a 3 volume o f 22,700 m (18.4 a c r e - f t ) , and a mean depth o f 0.4 m (1.3 ft,

3 Table 1) . I t rece i ves a combined i n f l o w o f approx imate ly 10 m /min

(2,600 ga l /m in ) and has a v e r y s h o r t h y d r a u l i c r e t e n t i o n t i m e o f about

40 h r . Water passes much more r a p i d l y through U-Pond than o t h e r ponds a t

Hanford. More t h a n 95% o f t h e wa te r e n t e r i n g U-Pond leaves v i a

p e r c o l a t i o n .

U-Pond i s un ique among a q u a t i c ecosystems. I t has uncommonly l a r g e

q u a n t i t i e s o f a c t i n i d e s and has c o n t a i n e d t r a n s u r a n i c e lements l o n g e r t h a n

any o t h e r a q u a t i c system. Approx ima te ly 5,000 kg (5.5 t o n s ) o f 2 3 8 ~ and

20 g (0.6 oz) o f 2 3 9 9 2 4 0 ~ u r e s i d e i n U-Pond sediments (Emery and Gar land,

1974). T h i s pond a l s o c o n t a i n s s m a l l q u a n t i t i e s o f mixed f i s s i o n and

a c t i v a t i o n p r o d u c t s ( F i g u r e 4 ) . These m a t e r i a l s have reached U-Pond v i a

Z -d i t ches , coming m a i n l y f rom a few a c c i d e n t a l s p i l l s i n l a b o r a t o r i e s

s u p p o r t i n g n u c l e a r r e p r o c e s s i n g o p e r a t i o n s .

U-Pond's a l g a l p o p u l a t i o n i s t h e most d i v e r s e among Hanford ponds and

streams ( T a b l e 21. I t c o n t a i n s b lue-qreen, qreen and e u g l e n o i d algae, a l o n g

w i t h d iatoms, d i n o f l a g e l l a t e s , and cryptomonads. U n l i k e o t h e r Han fo rd

ponds, U-Pond does n o t s u p p o r t a predom-inant ly p e r i p h y t i c a1 ga l p o p u l a t i o n .

The most abundant a l g a l forms a r e t h e f i l a r r ~ e n t o u s green a l g a Cladophora and

t h e c o l o n i a l g reen a l g a Tet rospora. Both o f these a lgae grow i n f l o a t i n g o r

submerged masses and deve lop l a r g e s t a n d i n g crops d u r i n g t h e summer months

(%13,000 kg o f biomass p e r year , Emery e t a l . , 1978).

U-Pond a l s o suppor ts t h e b roades t assor tment o f v a s c u l a r p l a n t s among

Hanford a q u a t i c systems ( T a b l e 4 ) . O f p a r t i c u l a r l y l a r g e abundance a r e

pondweeds and c a t t a i l s . Cottonwood and w i l l o w grow a long more t h a n h a l f o f

t h e pond 's p e r i m e t e r and on a s m a l l i s l a n d near i t s c e n t e r ( F i g u r e 4 ) . A l s o

p r e s e n t a re h o r s e t a i 1 s (Equisetum), duckweek (Lemna), b u l r u s h e s ( S c i r p u s ) ,

smartweed (Polygonum), wa te rc ress (Ror ippa) and w i l d l e t t u c e (Lac tuca ) . U-Pond has e l e v a t e d c o n c e n t r a t i o n s o f phosphate which i s an e s s e n t i a l

p l a n t n u t r i e n t ( T a b l e 1 ) . The sources o f t h i s enr ichment a r e e f f l u e n t s f r o m

a l a u n d r y c a r r i e d by U-14 d i t c h ( F i g u r e 4 ) and t o a l e s s e r e x t e n t , Z-19

d i t c h which a l s o c a r r i e d h i g h phosphate c o n c e n t r a t i o n s i n t o U-Pond

( T a b l e 6 ) . To determine t h e p h o t o s y n t h e t i c a c t i v i t y o f p l a n t l i f e

respond ing t o t h i s enr ichment, r a t e s o f carbon up take were ana lyzed on a

pondwide b a s i s ( T a b l e 3 ) . U-Pond's p r i m a r y p r o d u c t i v i t y o c c u r r e d as h i g h as

42 kg o f C/hectare p e r day, wh ich r e f l e c t s i t s e u t r o p h i c s t a t e . T h i s r a t e

of p r o d u c t i v i t y may a l s o be expressed as 440 ~ g C/R p e r hour. Us ing an

i d e n t i c a l method, Verdu in ( 1964) found p r ima ry p r o d u c t i v i t y r a t e s i n two

Pennsylvania ponds t o range f r om 120 t o 760 vg C/R pe r h r . Hence, U-Pond I s

p r ima ry p r o d u c t i v i t y resembles t h a t i n some ponds n o t assoc ia ted w i t h

nuc lear f a c i l i t i e s . I t s r a t e o f carbon a s s i m i l a t i o n a l s o approaches t h a t o f

a h i g h l y p r o d u c t i v e t e r r e s t r i a l community, a co rn f i e l d , which has an

average a s s i m i l a t i o n r a t e o f 63 kg o f C/hectare per day (Robbins e t a1 ., 1957).

Many o f t h e p l a n t forms t h a t c o n t r i b u t e t o t he o v e r a l l p r ima ry

p r o d u c t i v i t y i n U-Pond are submerged macrophytes t h a t are r oo ted i n t h e

sediments. However, t h e pho tosyn the t i c a c t i v i t y o f t h e s e vascu la r p l a n t s

appears t o be una f f ec ted by t h e M O O kg o f 2 3 8 ~ t h a t have been depos i ted

i n t h e sediments i n concen t ra t i ons averag ing 647 vg/g o r 0.6 O/o, (Emery and

Garland, 1974).

The mean r a t e w i t h which pe r i phy ton c o l o n i z e a bare s u b s t r a t e i n U-Pond 2 (54 ~g Chl - a/cm per day, Table 3 ) i s s i m i l a r t o t h e p roduc t i on r a t e s o f

Gable Pond and B-Pond and h i ghe r than t h a t o f West Pond.

Th is r e l a t i v e l y h i g h abundance o f vascu la r p l a n t s and algae p r o v i d e an

exce l l e n t h a b i t a t f o r i n v e r t e b r a t e l i f e i n U-Pond. Waterf l e a (Daphnia),

damse l f l y la rvae, backswimrners, water boatman, s n a i l s , and predaceous

d r a g o n f l y l a r v a e (Aeschna and L i b e l l u l a ) are r e l a t i v e l y abundant (Tab le 5 ) .

Most o f t he o ther i n v e r t e b r a t e forms found i n o ther Hanford ponds a l s o

appear i n U-Pond. However, t h e mean c o l o n i z a t i o n r a t e f o r i n v e r t e b r a t e s on 2 a bare subs t ra te (417 organisms/m per day, Table 3 ) exceeds o n l y t h a t o f

West Pond and i s lower than those o f ~ a b i e Pond (Tab le 3) . The mean

community d i v e r s i t y index i s t h e same as t h a t f o r Gable Pond (HI = 2.1),

a l though t h e mean evenness i s h i g h e r ( J ' = 0.8). These d i v e r s i t y da ta

suggest t h a t U-Pond's community s t r u c t u r e i s t h e most s t a b l e o f Hanford

system.

A r e l a t i v e l y l a r g e p o p u l a t i o n o f g o l d f i s h l i v e s i n U-Pond. These

g o l d f i s h show a maximum p roduc t i on r a t e of about 40 kg /hec ta re pe r year

(Table 3), w i t h a s t and ing c rop o f about 75,000 i n d i v i d u a l s . Est imates o f

g o l d f i s h p roduc t i on i n U-Pond a re n o t unusual and f a l l w i t h i n t h e p roduc t i on

ranges f o r suckers and carp r epo r t ed by Car lander ( 1955) f o r a number o f

No r t h American lakes and r e s e r v o i r s .

A series of Z-ditches have carried most of the radioactive effluents

into U-Pond over a distance of 885 m (2,900 ft, Table 2). Effluents

discharged from nuclear facility laboratories into these ditches ordinarily

contain only low-level activity (<lo n Ci/R). Occasional releases of

effluents containing higher activity were necessitated by infrequent

departures from routine operations in the laboratories. In the past,

effluents having higher activity that were released into a Z-ditch required

that it be backfilled and a new one relocated. This practice has prevented

much of these materials from reaching U-Pond. Z-19 ditch, formed in 1971,

is the most recent of these ditches. However, in March 1976, its supply of

water was substantially reduced because of a variation in operations in a

connecting laboratory. Prior to this reduction of discharges, Z-19 ditch

had a maximum depth of ~ 0 . 5 m (<2 ft) and carried an average flow rate of

0.6 m3/min (0.4 cfs, Table 6). At present, its flow rate into U-Pond is 3 <0.01 m /min and plays a negligible role in the pond's water budget. The

elevation of U-Pond ir,presently being maintained with cooling water from

the evaporatory-crys ta l l izer plant and from laundry effluents carried by

U-14 ditch.

The relatively high mean seston concentration of 13.25 mg/R (Table 6)

indicates that Z-19 ditch carried more suspended particulates than other

Hanford streams that were analyzed for this parameter. Its ranges of

temperature, pH, alkalinity, and dissolved oxygen resembled those of A-29 and 6-3 ditches, but concentrations of plant nutrients were different. The

mean concentration of ammonia-nitrogen was lower and mean phosphate and

silicate concentrations were higher than those in the other streams that

were sampled (Table 6).

The types of algae living in Z-19 ditch were generally similar to those

of other Hanford streams, although the variety does not appear to be as

large as in A-29 or 6-3 ditches (Table 2). Its periphytic algal population

represents only four families of diatoms, six families of green and two

families of blue-green algae. The predominant algal form in Z-19 ditch was

the filamentous green alga Spirogyra, growing attached to vascular plant

material. Cryptomonads, dinoflagellates and euglenoid algae were not

detec ted i n Z-19 d i t c h . Since t h i s stream con ta i ns r e l a t i v e l y h i ghe r l e v e l s

o f r a d i o a c t i v i t y , i t would have been d e s i r a b l e t o measure i t s p e r i p h y t o n

c o l o n i z a t i o n pressure. However, t h i s a n a l y s i s cou ld n o t be performed

w i t h o u t con tamina t ing expensive equipment t h a t was needed f o r o the r

s tud ies .

Despi te i t s r e l a t i v e l y smal l v a r i e t y o f algae, Z-19 d i t c h has a f a i r l y

broad assortments o f vascu la r p l a n t s (Tab le 4) . It i s r i c h l y popu la ted w i t h

pondweed and c a t t a i l s , and a l s o suppor ts bulrushes, speedwell, watercress,

and w i l d l e t t u c e . Cottonwoods a l s o grow a long t h e banks o f t h i s stream.

Only seven i n v e r t e b r a t e forms were de tec ted i n Z-19 d i t c h (Tab le 5 ) .

These a re o l igochae tes and i n s e c t s i n c l u d i n g w a t e r s t r i d e r s , backswimmers,

waterboatmen, and t h e l a r vae o f midges and damself 1 i es . Mean c o l o n i z a t i o n

r a t e s o f these i n v e r t e b r a t e s cou ld n o t be determined due t o inadequate

y i e l d s f rom t h e l u c i t e sampl ing subs t ra tes , a l though we es t imate t h a t t h e y 2 do n o t c o l o n i z e more r a p i d l y than 100 organisms/m per day (Tab le 3 ) .

Even t h e b u r l a p subs t ra tes used f o r de te rmin ing d i v e r s i t y i n d i c e s a t t r a c t e d

i n v e r t e b r a t e s a t a mean r a t e o f o n l y 6 i n d i v i d u a l s per month, r ep resen t i ng

j u s t 2 f a m i l i e s . The r e s u l t i n g d i v e r s i t y i n d i c e s were lower than i n d i c e s i n

100-N t r ench and t he ponds, b u t g e n e r a l l y h igher than those i n B-3 and A-29

d i t c h e s (Tab le 3 ) . These low mean i n d i c e s f o r community d i v e r s i t y

(HI = 0.3) and evenness ( J ' = 0.3), i n a d d i t i o n t o t h e l i m i t e d v a r i e t y o f

a l g a l forms, suggest than Z-19 d i t c h has n o t a t t a i n e d success ional s t a b i l i t y

i n s p i t e o f p l e n t i f u l subs t ra tes p rov ided by a v a r i e t y o f macrophytes.

100-N TRENCH

The rema in ing s tudy s i t e , 100-N t rench, stands apa r t f rom t h e r e s t i n

severa l ways. Rad ionuc l ide concen t ra t i ons and dose r a t e s i n 100-N t r ench

are cons ide rab l y h igher than those o f o t he r s tudy s i t e s , a l though Z-19 d i t c h

has h i ghe r a concen t ra t i ons . I t has rece i ved c o o l i n g water d i r e c t l y f rom

t h e 1301-N c r i b a t t h e N- reac to r s i t e s ince 1962-63 (F i gu res 1 and 5 ) . Th i s

c r i b i s used t o s t o r e r a d i o a c t i v e wastes t h a t a re r o u t i n e by-products o f

nuc lear processes w i t h i n t h e r e a c t o r . The combinat ion o f mixed f i s s i o n and

a c t i v a t i o n p roduc ts and a c t i n i d e s i n c l u d i n g t r a n s u r a n i c elements t h a t a re

presen t i n t h i s water have en te red through smal l l eaks i n t h e c o o l i n g

man i f o l d . Occas ional ly , 100-N t r ench rece i ves contaminates f rom N- reac to r

f o l l o w i n g a f u e l element f a i l u r e .

I n a d d i t i o n t o these c h a r a c t e r i s t i c s , t h i s t r ench i s l ess t han h a l f t h e

l eng th b u t more than t w i c e t h e w i d t h o f t h e o the r Hanford s tudy d i t c h e s 3 (Table 6 ) . I t accommodates a f l o w r a t e o f approx imate ly 7 m /min (%4 c f s )

2 2 over a su r face area o f about 2440 m (26,300 ft ) . Th is c rea tes a slow

moving l o t i c ( r unn ing wate r ) environment w i t h a maximum depth o f <1 m

(<3 f t ) . F i n a l l y , t h e c l o s e p r o x i m i t y o f 100-N t r ench t o 1301-N c r i b o f t e n

causes waste hea t t o e n t e r t h i s aqua t i c environment. Temperatures i n 100-N

t rench are f r e q u e n t l y 8-10 C h i ghe r than i n o the r aqua t i c s i t e s (Tab le 6 ) .

The v a r i e t y o f a l g a l forms o c c u r r i n g i n 100-N t r ench i s s i m i l a r t o t h a t

i n Z-19 d i t c h . The diatoms ( f o u r f a m i l i e s ) , b lue-green a lgae ( two f a m i l i e s )

and some o f the green algae ( f i v e f a m i l i e s ) o c c u r r i n g i n 100-N t r e n c h a re

p e r i p h y t i c , b u t unat tached masses o f Sp i rogyra and Hydrod ic tyon a re a l s o

abundant (Tab le 2 ) . Leve ls of r a d i o a c t i v i t y i n t h i s t r ench prevented Chl - a

analyses t h a t were needed f o r pe r i phy ton c o l o n i z a t i o n p ressure

de te rmina t ions .

Vascular p l a n t s appear ing i n 100-N t r ench are l i m i t e d t o a few stands

o f bu l r ush and speedwel l (Tab le 4 ) . Th i s may be caused by a l i m i t e d

p h y s i c a l h a b i t a t s i nce 100-N t rench i s deeply recessed between 3.6 m (12 f t )

h i g h embankments and i s covered w i t h an i r o n screen (10 cm o r 6 i n . mesh) t o

reduce c o n t r a c t w i t h w i l d l i f e . The c o l l e c t i v e e f f e c t o f t he h e i g h t and

steep s lope o f t h e embankments ( ~ 3 0 " ) andtumbleweed cap tu red by t he screen

reduces l i g h t p e n e t r a t i o n t o areas o f the t r ench that . m igh t o therw ise

suppor t macrophyte popu la t i ons . Th is t r ench i s a l s o heated more f r e q u e n t l y

and t o h i ghe r ter r~peratures than t he o the r systems (Tab le 6 ) which cou ld

suppress the growth o f macrophytes.

I n v e r t e b r a t e l i f e i n 100-N t r ench i s r e l a t i v e l y l i m i t e d i n v a r i e t y

(Tab le 5 ) . There i s an abundance o f s n a i l s (L.mnaea) and midge l a r v a e a long

w i t h appearances o f d r a g o n f l y and damse l f l y la rvae, backswimmers, and

o l igochae tes . The c o l o n i z a t i o n p ressure o f t h i s i n v e r t e b r a t e p o p u l a t i o n i s

h i ghe r than t he o the r aqua t i c syste~ns except Gable Pond and B-3 d i t c h (mean

2 c o l o n i z a t i o n r a t e = 897 organisms/m pe r day, Table 3 ) . Many o f these

organisms a re midge larvae, however, which i s r e f l e c t e d by a lower mean

community d i v e r s i t y index, r e l a t i v e t o ponds, and a moderate ly low mean

evenness index ( H ' = 0.9 and J ' = 0.5, Table 3 ) .

I n general, t he v a r i e t y o f aqua t i c l i f e appearing i n 100-N t r ench seems

reduced i n c o n t r a s t t o most o f t h e o the r s tudy systems, a l though t h e

a c t i v i t y o f these b i o t a i n terms o f observable a l g a l growths and

i n v e r t e b r a t e c o l o n i z a t i o n pressure appears comparable t o those o f severa l

Hanford ponds.

DISTRIBUTION

No. o f Copies

No. o f Copies

OFFSI TE

A. A. Churm U.S. DOE Chicage Patent A t t o rney 9800 South Cass Avenue Argonne, I L 60439

J. Swinebroad U.S. DOE O f f i c e o f Hea l th

and Environmental Research Washington, DC 20545

R. L. Mat te rs U.S. DOE O f f i c e o f Hea l th

and Environmental Research Washington, DC 20545

T. C. Chee U.S. DOE O f f i c e o f Nuclear

Waste Management Washington, DC 20545

27 U.S. DOE Technica l I n fo rma t i on Center

0. D. Markham Environmental Sciences Branch Hea l th Serv ices Labora to ry U.S. DOE P.O. Box 2108 Idaho F a l l s , I D 83410

M. Smith, D i r e c t o r Savannah R i ve r Ecology Labora to ry Drawer E Aiken, SC 29801

L. D. Eyman Environmental Sciences D i v i s i o n Oak Ridge Na t i ona l Laboratory P.O. Box X Oak Ridge, Tennessee 37830

F. W. Whicker Radio logy and Rad ia t i on B io l ogy Department Colorado S ta te U n i v e r s i t y F o r t C o l l i n s , CO 80521

T. E. Hakonson Los Alamos S c i e n t i f i c Labora to ry P.O. Box 1663 Los Alamos, NM 87544

E. B. Fowler H-7, MS-578 Los Alamos S c i e n t i f i c Laboratory P.O. Box 1663 Los Alamos, NM 87544

ONSI TE

4 U.S. DOE - U.S. DEPARTMENT OF ENERGY -RL

H. E. Ransom ( 2 ) J. L. Rhodes M. W. Tiernan/P. F. X. Dunigan

8 Rockwell Hanford Operat ions

D. J. Brown L. E. Burns R. A. Deju R. D. Fox R. E. Isaacson D. Paine J. V. Panesko

2 Un i t ed Nuclear Inc .

T. E. Dabrowski L. P. D ied i ke r

76 P a c i f i c Nor thwest L a b o r a t o r i e s

W. J. B l a i r B. W. Compton ( 4 ) C. E. Cushing L. L. Eberhard t R. M. Emery (52 ) R. F. F o s t e r M. C. McShane W. H. R i c k a r d L. E. Rogers R. G. Schreckh ise J. A. S t rand W. L. Templeton B. E. Vaughan D. G. Watson Techn ica l I n f o r m a t i o n ( 5 ) P u b l i s h i n g C o o r d i n a t i o n ( 2 )