Combination of searches for pairs of Higgs bosons with the ATLAS detector · 2018. 11. 22. · 0.04...

Post on 23-Mar-2021

0 views 0 download

Transcript of Combination of searches for pairs of Higgs bosons with the ATLAS detector · 2018. 11. 22. · 0.04...

Combination of searches for pairs of Higgs bosonswith the ATLAS detector

Petar BokanUniversity of Göttingen, Uppsala University

on behalf of the ATLAS Collaboration

Double Higgs Production at Colliders Workshop, 4-8 September 2018

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Higgs boson pair production at the LHCo SM Higgs boson pair production (gluon-gluon fusion - ggF):

Production cross-section small:

σSM = 33.41 fb at√s = 13 TeV

(for mH = 125.09 GeV, at NNLO and including NNLL correctionsand NLO finite top-quark mass effects)

Phys. Rev. Lett. 117 (2016) 012001 10.23731/CYRM-2017-002 LHCHXSWGHH

o Potential non-resonant BSM enhancements(in this report: modified trilinear Higgs self-coupling strength)

o Benchmark BSM resonancehypotheses:o Randall-Sundrum gravitonG→ HH (spin=2)

o S → HH (spin=0)

2/19

Higgs boson self-couplingHiggs-fermion Yukawa coupling

Resonant production

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Higgs boson pair production at the LHCo SM Higgs boson pair production (gluon-gluon fusion - ggF):

Production cross-section small:

σSM = 33.41 fb at√s = 13 TeV

(for mH = 125.09 GeV, at NNLO and including NNLL correctionsand NLO finite top-quark mass effects)

Phys. Rev. Lett. 117 (2016) 012001 10.23731/CYRM-2017-002 LHCHXSWGHH

o Potential non-resonant BSM enhancements(in this report: modified trilinear Higgs self-coupling strength)

o Benchmark BSM resonancehypotheses:o Randall-Sundrum gravitonG→ HH (spin=2)

o S → HH (spin=0)

2/19

Higgs boson self-couplingHiggs-fermion Yukawa coupling

Resonant production

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Higgs boson pair production at the LHCo SM Higgs boson pair production (gluon-gluon fusion - ggF):

Production cross-section small:

σSM = 33.41 fb at√s = 13 TeV

(for mH = 125.09 GeV, at NNLO and including NNLL correctionsand NLO finite top-quark mass effects)

Phys. Rev. Lett. 117 (2016) 012001 10.23731/CYRM-2017-002 LHCHXSWGHH

o Potential non-resonant BSM enhancements(in this report: modified trilinear Higgs self-coupling strength)

o Benchmark BSM resonancehypotheses:o Randall-Sundrum gravitonG→ HH (spin=2)

o S → HH (spin=0)2/19

Higgs boson self-couplingHiggs-fermion Yukawa coupling

Resonant production

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Di-Higgs final states

Di-Higgs decay modes and relativebranching fractions:

bb WW ττ ZZ γγ

bb 33%

WW 25% 4.6%

ττ 7.4% 2.5% 0.39%

ZZ 3.1% 1.2% 0.34% 0.076%

γγ 0.26% 0.10% 0.029% 0.013% 0.0005%

Channels considered forthis combination:

HH → bb̄bb̄: the highest BR,large multijet background

HH → bb̄τ+τ−:relatively large BR, cleaner final state

- τlepτhad (BR: 45.8%)- τhadτhad (BR: 41.9%)

HH → bb̄γγ:small BR, clean signal extraction due toa good γγ mass resolution

3/19

10.23731/CYRM-2017-002

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

(Resolved) HH→4bo Background:∼ 95% multijet and ∼ 5% tt̄

o Data-driven estimation of themultijet background→ 2b+ nj (n > 2) events model 4b

o tt̄ normalization from data

[GeV]HHm200 400 600 800 1000 1200 1400

Dat

a / B

kgd

0.5

1

1.5

Eve

nts

/ 100

GeV

1−10

1

10

210

310

410

510

610

710Data

Multijet

tHadronic t

tSemi-leptonic t

Scalar (280 GeV)

100×SM HH

=1)PlM (800 GeV, k/KKG

=2)PlM (1200 GeV, k/KKG

Stat+Syst Uncertainty

ATLAS

Resolved Signal Region, 2016

-1 = 13 TeV, 24.3 fbs

[GeV]lead2jm

60 80 100 120 140 160 180 200

[GeV

]su

bl2j

m

60

80

100

120

140

160

180

200

2E

vent

s / 2

5 G

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16Simulation ATLAS

Resolved, 2016

-1 = 13 TeV, 24.3 fbs

o Integrated luminosity(2015+2016): 27.5 fb−1

o Final discriminant: mHH

4/19

arXiv:1804.06174

Signal RegionControl RegionSideband Region

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

(SM non-resonant) HH→bbττo A Boosted Decision Tree (BDT) classification is applied after preselection

BDT score1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Eve

nts

/ Bin

1

10

210

310

410

510

610

710Data NR HH at exp limitTop-quark

fakeshadτ →jet +(bb,bc,cc)ττ →Z

OtherSM HiggsUncertaintyPre-fit background

ATLAS -113 TeV, 36.1 fb

SLT 2 b-tagshadτlepτ

BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1Dat

a/P

red.

0.81

1.2BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Eve

nts

/ Bin

1−10

1

10

210

310

410

510 Data NR HH at exp limitTop-quark

fakeshadτ →jet +(bb,bc,cc)ττ →Z

OtherSM HiggsUncertaintyPre-fit background

ATLAS -113 TeV, 36.1 fb

LTT 2 b-tagshadτlepτ

BDT score

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1Dat

a/P

red.

0.81

1.2

o Jets→ τhad fakes: data-driven(Fake Factor/Rate methods)

o tt̄ and Z + bb̄ normalization from datao 3 signal regions (τlepτhad split into singlee/µ trigger and e/µ+ τ trigger)

o BDT score used as a final discriminant 5/19

arXiv:1808.00336

τlepτhad

SM SMτhadτhad

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

(SM non-resonant) HH→bbγγ

0

5

10

15

20Ev

ents

/ 2.5

GeV ATLAS√s = 13TeV, 36.1 fb 1

1 b-tag, tight selection

DataBkg-only fit

110 120 130 140 150 160m [GeV]

0

5

Data

Bkg

0

2

4

6

8

Even

ts / 2

.5 G

eV ATLAS√s = 13TeV, 36.1 fb 1

2 b-tag, tight selection

DataBkg-only fit

110 120 130 140 150 160m [GeV]

024

Data

Bkg

[GeV]jjγγm250 300 350 400 450

Fra

ctio

n of

eve

nts

0

0.05

0.1

0.15

0.2

0.25

0.3

2 b-tag, loose selection SimulationATLAS

H = mjjsolid line indicates that mconstraint is applied

= 260 GeVXm = 300 GeVXm

= 350 GeVXm = 400 GeVXm

+jetsγγSM

o Tight selection applied (pT of the jets, mjj)o Data-driven methods used to estimate thecontinuum backgrounddouble two-dimensional sideband method

o Unbinned maximum-likelihood fits to thedata in the 1-tag and 2-tag regions

o Final discriminant: mγγ (non-resonant)6/19

arXiv:1807.04873

1b-tagtight tight

2b-tags

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Combination strategyo The combination is realized by constructing a combined likelihood functionthat takes into account data, models and systematic uncertainties

o The asymptotic approximation is used for statistical analysis of all∗channels, and the combination

o All the signal regions considered are orthogonal, or have negligible overlap.o Instrumental and luminosity uncertainties correlated across the channels.o The acceptance and the background modeling uncertainties are treated asuncorrelated.

o Theoretical uncertainties on the total signal cross-section are not considered.

∗For the individual bbγγ result pseudo-experiments were used - agreementat a level of 10% (5% for the combination) for all results

7/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Non-resonant SM HH production

7/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

SM HH production, combined result

0 10 20 30 40 50 60 70 80

ggF

SMσ HH) normalized to → (pp ggFσ95% CL upper limit on

Combined

γγb b→HH

-τ+τb b→HH

bbb b→HH 12.9 20.7 18.5

12.6 14.6 11.9

20.4 26.3 25.1

6.7 10.4 9.2

Obs. Exp. Exp. stat.

ObservedExpected

σ 1±Expected σ 2±Expected

ATLAS Preliminary-1 = 13 TeV, 27.5 - 36.1 fbs

HH) = 33.4 fb→ (pp ggFSMσ

Run-1 ATLAS combination obs (exp): 70 (48) Phys. Rev. D 92, 092004 8/19

obs: 0.22 pbexp: 0.35 pb

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Trilinear Higgs self-coupling variations

8/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Varied trilinear Higgs self-couplingHH production modified

(using scale factors: κt = gtt̄H/gSMtt̄H and κλ = λHHH/λ

SMHHH)

A(κt, κλ) = κ2tB + κtκλT

A(1, 0) = B A(1, 1) = B + T A(1, 2) = B + 2TExpress |B|2, |T |2 and (BT ∗ + TB∗) in terms of |A(1, 0)|2, |A(1, 1)|2 and |A(1, 2)|2,

which leads to:

|A(κt, κλ)|2 = a(κt, κλ)|A(1, 0)|2 + b(κt, κλ)|A(1, 1)|2 + c(κt, κλ)|A(1, 2)|2

Any (κt, κλ) combination at LO can be obtainedfrom a linear combination of some 3 (κt 6= 0, κλ) samples!

9/19

TB

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Varied trilinear Higgs self-couplingHH production modified

(using scale factors: κt = gtt̄H/gSMtt̄H and κλ = λHHH/λ

SMHHH)

A(κt, κλ) = κ2tB + κtκλT

A(1, 0) = B A(1, 1) = B + T A(1, 2) = B + 2TExpress |B|2, |T |2 and (BT ∗ + TB∗) in terms of |A(1, 0)|2, |A(1, 1)|2 and |A(1, 2)|2,

which leads to:

|A(κt, κλ)|2 = a(κt, κλ)|A(1, 0)|2 + b(κt, κλ)|A(1, 1)|2 + c(κt, κλ)|A(1, 2)|2

Any (κt, κλ) combination at LO can be obtainedfrom a linear combination of some 3 (κt 6= 0, κλ) samples!

9/19

TB

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Varied trilinear Higgs self-couplingHH production modified

(using scale factors: κt = gtt̄H/gSMtt̄H and κλ = λHHH/λ

SMHHH)

A(κt, κλ) = κ2tB + κtκλT

A(1, 0) = B A(1, 1) = B + T A(1, 2) = B + 2TExpress |B|2, |T |2 and (BT ∗ + TB∗) in terms of |A(1, 0)|2, |A(1, 1)|2 and |A(1, 2)|2,

which leads to:

|A(κt, κλ)|2 = a(κt, κλ)|A(1, 0)|2 + b(κt, κλ)|A(1, 1)|2 + c(κt, κλ)|A(1, 2)|2

Any (κt, κλ) combination at LO can be obtainedfrom a linear combination of some 3 (κt 6= 0, κλ) samples!

9/19

TB

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Varied trilinear Higgs self-couplingHH production modified

(using scale factors: κt = gtt̄H/gSMtt̄H and κλ = λHHH/λ

SMHHH)

A(κt, κλ) = κ2tB + κtκλT

A(1, 0) = B A(1, 1) = B + T A(1, 2) = B + 2TExpress |B|2, |T |2 and (BT ∗ + TB∗) in terms of |A(1, 0)|2, |A(1, 1)|2 and |A(1, 2)|2,

which leads to:

|A(κt, κλ)|2 = a(κt, κλ)|A(1, 0)|2 + b(κt, κλ)|A(1, 1)|2 + c(κt, κλ)|A(1, 2)|2

Any (κt, κλ) combination at LO can be obtainedfrom a linear combination of some 3 (κt 6= 0, κλ) samples!

9/19

TB

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Linear combinationo Showing generator level mHH for:κλ = {0, 1, 2, 20}(other parameters fixed to the SM)

o Different bases tested for linearcombination(e.g. κλ = {0, 1, 2} vs κλ = {0, 1, 20})

o Remaining sample used for validation(very good closure at generator level) 300 400 500 600 700 800 900 1000

[GeV]HHm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Arb

itrar

y un

its ATLAS Simulation Work In Progress=13 TeVs

=0λκ=1λκ=2λκ=20λκ

200 300 400 500 600 700 800 900 1000

[GeV]HHm

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

a.u. ATLAS Simulation Work In Progress

=13 TeVs

=20λκ

generated sample={0,1,2}λκlinear combination

200 300 400 500 600 700 800 900 1000

[GeV]HHm

0

5

10

15

20

25

30

35

40

456−10×

a.u. ATLAS Simulation Work In Progress

=13 TeVs

=2λκ

generated sample={0,1,20}λκlinear combination

10/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Trilinear Higgs self-coupling scan strategymκλ=xHH , for x = {−20,−19, ..., 20}, at generator level, at LO

obtained using the linear combination :

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=-5λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

2

4

6

8

10

12

14

16

18

6−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=2λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.05

0.1

0.15

0.2

0.25

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=5λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=10λκ

Weights, binned in mHH , obtained as: mκλ=xHH |bin i/m

κλ=1HH |bin i

200 300 400 500 600 700 [GeV]HHm

10

210

310

=1

λκ HH

/m=

-5λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=-5λκ=16.57=1λκσ/=-5λκσLO

200 300 400 500 600 700 [GeV]HHm

1−10

1

10

=1

λκ HH

/m=

2λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=2λκ=0.47=1λκσ/=2λκσLO

200 300 400 500 600 700 [GeV]HHm

1

10

210

310=1

λκ HH

/m=

5λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=5λκ=2.42=1λκσ/=5λκσLO

200 300 400 500 600 700 [GeV]HHm

1

10

210

310

=1

λκ HH

/m=

10λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=10λκ=17.46=1λκσ/=10λκσLO

These weights are applied to the fully reconstructed NLO SM sample to obtainany κλ point, assuming that the LO to NLO factorization does not depend on κλ

11/19

1

2

3

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Trilinear Higgs self-coupling scan strategymκλ=xHH , for x = {−20,−19, ..., 20}, at generator level, at LO

obtained using the linear combination :

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=-5λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

2

4

6

8

10

12

14

16

18

6−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=2λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.05

0.1

0.15

0.2

0.25

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=5λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=10λκ

Weights, binned in mHH , obtained as: mκλ=xHH |bin i/m

κλ=1HH |bin i

200 300 400 500 600 700 [GeV]HHm

10

210

310

=1

λκ HH

/m=

-5λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=-5λκ=16.57=1λκσ/=-5λκσLO

200 300 400 500 600 700 [GeV]HHm

1−10

1

10

=1

λκ HH

/m=

2λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=2λκ=0.47=1λκσ/=2λκσLO

200 300 400 500 600 700 [GeV]HHm

1

10

210

310=1

λκ HH

/m=

5λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=5λκ=2.42=1λκσ/=5λκσLO

200 300 400 500 600 700 [GeV]HHm

1

10

210

310

=1

λκ HH

/m=

10λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=10λκ=17.46=1λκσ/=10λκσLO

These weights are applied to the fully reconstructed NLO SM sample to obtainany κλ point, assuming that the LO to NLO factorization does not depend on κλ

11/19

1

2

3

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Trilinear Higgs self-coupling scan strategymκλ=xHH , for x = {−20,−19, ..., 20}, at generator level, at LO

obtained using the linear combination :

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=-5λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

2

4

6

8

10

12

14

16

18

6−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=2λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.05

0.1

0.15

0.2

0.25

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=5λκ

200 300 400 500 600 700 800 900 [GeV]HHm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3−10×

a.u. ATLAS Simulation Work In Progress

= 13 TeVs

=10λκ

Weights, binned in mHH , obtained as: mκλ=xHH |bin i/m

κλ=1HH |bin i

200 300 400 500 600 700 [GeV]HHm

10

210

310

=1

λκ HH

/m=

-5λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=-5λκ=16.57=1λκσ/=-5λκσLO

200 300 400 500 600 700 [GeV]HHm

1−10

1

10

=1

λκ HH

/m=

2λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=2λκ=0.47=1λκσ/=2λκσLO

200 300 400 500 600 700 [GeV]HHm

1

10

210

310=1

λκ HH

/m=

5λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=5λκ=2.42=1λκσ/=5λκσLO

200 300 400 500 600 700 [GeV]HHm

1

10

210

310

=1

λκ HH

/m=

10λκ HH

m

ATLAS Simulation Work In Progress=13 TeVs

=10λκ=17.46=1λκσ/=10λκσLO

These weights are applied to the fully reconstructed NLO SM sample to obtainany κλ point, assuming that the LO to NLO factorization does not depend on κλ

11/19

1

2

3

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Differences compared to the SM HH searcho Acceptance changes significantly as a function of κλ:

20− 15− 10− 5− 0 5 10 15 20

λκ

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Effi

cien

cy [%

Acc

epta

nce

2015

2016

ATLAS Simulation Preliminarybbb b→=13 TeV, HHs

20− 15− 10− 5− 0 5 10 15 20

λκ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Effi

cien

cy [%

Acc

epta

nce

SLThadτlepτ

hadτhadτ

ATLAS Simulation Preliminary-τ+τb b→=13 TeV, HHs

20− 15− 10− 5− 0 5 10 15 20

λκ

5

6

7

8

9

10

11

Effi

cien

cy [%

Acc

epta

nce

1 b-tag

2 b-tags

ATLAS Simulation Preliminaryγγb b→=13 TeV, HHs

variations of the mHH spectrum with κλ:

300 400 500 600 700 800

[GeV]HHm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Arb

itrar

y un

its

ATLAS Simulation Preliminary

= 13 TeVs = 0λκ = 2λκ = 5λκ

300 400 500 600 700 800

[GeV]HHm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Arb

itrar

y un

its

ATLAS Simulation Preliminary

= 13 TeVs5− = λκ

= 1λκ= 10λκ

o Looser bbγγ selection (softer pT for large κλ)o bbττ : a dedicated BDT, trained on κλ = 20

signal is used since it performs good for all κλpoints.

o The shape of bbγγ discriminant (mγγ)remains independent of κλ, while an additionalloss in sensitivity is observed for bbττ and 4banalyses for large |κλ|. 1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT Score Cut

0

0.2

0.4

0.6

0.8

1

1.2

Sig

nal F

ract

ion

=-20λκ=-1λκ=1λκ=2λκ=3λκ=4λκ=5λκ=10λκ=20λκ

ATLAS Simulation Work In Progress

hadτhadτ bb→HH

12/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Differences compared to the SM HH searcho Acceptance changes significantly as a function of κλ:

20− 15− 10− 5− 0 5 10 15 20

λκ

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Effi

cien

cy [%

Acc

epta

nce

2015

2016

ATLAS Simulation Preliminarybbb b→=13 TeV, HHs

20− 15− 10− 5− 0 5 10 15 20

λκ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Effi

cien

cy [%

Acc

epta

nce

SLThadτlepτ

hadτhadτ

ATLAS Simulation Preliminary-τ+τb b→=13 TeV, HHs

20− 15− 10− 5− 0 5 10 15 20

λκ

5

6

7

8

9

10

11

Effi

cien

cy [%

Acc

epta

nce

1 b-tag

2 b-tags

ATLAS Simulation Preliminaryγγb b→=13 TeV, HHs

variations of the mHH spectrum with κλ:

300 400 500 600 700 800

[GeV]HHm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Arb

itrar

y un

its

ATLAS Simulation Preliminary

= 13 TeVs = 0λκ = 2λκ = 5λκ

300 400 500 600 700 800

[GeV]HHm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Arb

itrar

y un

its

ATLAS Simulation Preliminary

= 13 TeVs5− = λκ

= 1λκ= 10λκ

o Looser bbγγ selection (softer pT for large κλ)o bbττ : a dedicated BDT, trained on κλ = 20

signal is used since it performs good for all κλpoints.

o The shape of bbγγ discriminant (mγγ)remains independent of κλ, while an additionalloss in sensitivity is observed for bbττ and 4banalyses for large |κλ|. 1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT Score Cut

0

0.2

0.4

0.6

0.8

1

1.2

Sig

nal F

ract

ion

=-20λκ=-1λκ=1λκ=2λκ=3λκ=4λκ=5λκ=10λκ=20λκ

ATLAS Simulation Work In Progress

hadτhadτ bb→HH

12/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Differences compared to the SM HH search

[GeV]HHReconstructed m

200 400 600 800 1000 1200 1400

Eve

nts

/ 100

GeV

1

10

210

310

410

510

610

710Data

Multijet

tHadronic t

tSemi-leptonic t

Stat+Syst Uncertainty

=-5 (x 95)λκNR HH

=1 (x 1291)λκNR HH

=10 (x 98)λκNR HH

PreliminaryATLAS -1 = 13 TeV, 27.5 fbs

bbb b→HH Resolved Signal Region, 2015+2016

[GeV]HHReconstructed m200 400 600 800 1000 1200 1400

S /

B

0

0.01

0.02 xBRσNR HH normalized to

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1BDT

1

10

210

310

410

510

610

710

Eve

nts

/ Bin Data

=-5λκNR HH =1λκNR HH =10λκNR HH

Top-quark fakeshadτ →jet

+(bb,bc,cc)ττ →Z OtherSM HiggsUncertaintyPre-fit background

ATLAS Preliminary -1 = 13 TeV, 36.1 fbs

-τ+τb b→HH SLT 2 b-tagshadτlepτ

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT

0.81

1.2

Dat

a/P

red.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1BDT

1

10

210

310

410

510

610

710

Eve

nts

/ Bin Data

=-5λκNR HH =1λκNR HH =10λκNR HH

Top-quark fakes (Multi-jets)hadτ →jet

+(bb,bc,cc)ττ →Z )t fakes (thadτ →jet

OtherSM HiggsUncertaintyPre-fit background

ATLAS Preliminary -1 = 13 TeV, 36.1 fbs

-τ+τb b→HH 2 b-tagshadτhadτ

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT

0.81

1.2

Dat

a/P

red.

[GeV]HHReconstructed m

200 400 600 800 1000 1200 1400

Eve

nts

/ 100

GeV

1

10

210

310

410

510

610

710Data

Multijet

tHadronic t

tSemi-leptonic t

Stat+Syst Uncertainty

=0 (x 663)λκNR HH

=2 (x 2519)λκNR HH

=5 (x 712)λκNR HH

PreliminaryATLAS -1 = 13 TeV, 27.5 fbs

bbb b→HH Resolved Signal Region, 2015+2016

[GeV]HHReconstructed m200 400 600 800 1000 1200 1400

S /

B

00.0020.0040.006 xBRσNR HH normalized to

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1BDT

1

10

210

310

410

510

610

710

Eve

nts

/ Bin Data

=0λκNR HH =2λκNR HH =5λκNR HH

Top-quark fakeshadτ →jet

+(bb,bc,cc)ττ →Z OtherSM HiggsUncertaintyPre-fit background

ATLAS Preliminary -1 = 13 TeV, 36.1 fbs

-τ+τb b→HH SLT 2 b-tagshadτlepτ

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT

0.81

1.2

Dat

a/P

red.

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1BDT

1

10

210

310

410

510

610

710

Eve

nts

/ Bin Data

=0λκNR HH =2λκNR HH =5λκNR HH

Top-quark fakes (Multi-jets)hadτ →jet

+(bb,bc,cc)ττ →Z )t fakes (thadτ →jet

OtherSM HiggsUncertaintyPre-fit background

ATLAS Preliminary -1 = 13 TeV, 36.1 fbs

-τ+τb b→HH 2 b-tagshadτhadτ

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT

0.81

1.2

Dat

a/P

red.

13/19

κλ

={−

5,1,

10}

κλ

={0,2,5}

HH → bb̄bb̄ HH → bb̄τlepτhad HH → bb̄τhadτhad

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Limits on the cross-section as a function of κλ

20− 15− 10− 5− 0 5 10 15 20

SMλ /

HHHλ = λκ

2−10

1−10

1

10

210

HH

) [p

b]→

(pp

gg

95%

CL

uppe

r lim

it on

SM

(exp.)bbbb (obs.)bbbb (exp.)-τ+τbb (obs.)-τ+τbb

(exp.)γγbb (obs.)γγbb

Combined (exp.)Combined (obs.)

(Combined)σ1±Expected (Combined)σ2±Expected

NLO theory pred.

ATLAS Preliminary

-127.5 - 36.1 fb = 13 TeV,s

The scale factor κλ is observed (expected) to be constrained in the range:−5.0 < κλ < 12.1 (−5.8 < κλ < 12.0)

14/19

4bbbττbbγγcombination

dashed:expectedsolid:observed

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Full systematic uncertainty vs data stat-only

20− 15− 10− 5− 0 5 10 15 20

SMλ /

HHHλ = λκ

2−10

1−10

1

10

210

HH

) [p

b]→

(pp

gg

95%

CL

uppe

r lim

it on

SM

(exp.)bbbb

(exp.)-τ+τbb

(exp.)γγbb

Combined (exp.)Combined (exp.) full syst.

(Combined)σ1±Expected (Combined)σ2±Expected

NLO theory pred.

ATLAS Preliminary

-127.5 - 36.1 fb = 13 TeV,s

Stat. only

Stat. only limits for the individual channels and the combination15/19

4bbbττbbγγcombination

solid:expectedfull syst.dashed:expectedstat-only

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Resonant HH production(combination in the mass range: 260-1000 GeV)

Differences compared to the SM HH search:

bbγγ:looser selection below 500 GeV

final discriminant: mγγjj

bb̄ττ :dedicated BDTs

bb̄bb̄:boosted analysis for signal masses > 800 GeV

(combined with the resolved)Looking for two Higgs candidates, each composed of a single

large-R (1.0) jet with at least one b-tagged track jet associated to it15/19

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Scalar resonance

300 400 500 600 700 800 900 1000 [GeV]Sm

3−10

2−10

1−10

1

10

210

310

HH

) [p

b]→

S

→(p

p σ

95%

CL

uppe

r lim

it on

SM

(exp.)bbbb (obs.)bbbb (exp.)-τ+τbb (obs.)-τ+τbb

(exp.)γγbb (obs.)γγbb

Combined (exp.)Combined (obs.)

(Combined)σ1±Expected (Combined)σ2±Expected

= 2)βhMSSM (tan

ATLAS Preliminary-1 = 13 TeV, 27.5 - 36.1 fbs spin-0

hMSSM, narrow width CP -even Higgs boson (tanβ = 2)∗: mS < 462 GeV at 95% CL∗tanβ = 2: ratio of the vacuum expectation values of the two Higgs doublets

16/19

4bbbττbbγγcombination

dashed:expectedsolid:observed

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Randall-Sundrum graviton model

300 400 500 600 700 800 900 1000 [GeV]

KK

*G

m

2−10

1−10

1

10

210

HH

) [p

b]→

KK

* G

→(p

p σ

95%

CL

uppe

r lim

it on

SM

(exp.)bbbb (obs.)bbbb (exp.)-τ+τbb (obs.)-τ+τbb

Combined (exp.)Combined (obs.)

(Combined)σ1±Expected (Combined)σ2±Expected = 1.0PlMBulk RS, k/

ATLAS Preliminary-1 = 13 TeV, 27.5 - 36.1 fbs = 1.0PlMspin-2, k/

(k/M̄Pl = 1)∗ 307 < mG < 1362 GeV∗∗ at 95% CL∗k: curvature of the warped extra dimension, M̄Pl: the effective four-dimensional Planck scale

∗∗the upper limit on the mass comes from 4b only 17/19

4bbbττcombination

dashed:expectedsolid:observed

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Randall-Sundrum graviton model

300 400 500 600 700 800 900 1000 [GeV]

KK

*G

m

3−10

2−10

1−10

1

10

210

HH

) [p

b]→

KK

* G

→(p

p σ

95%

CL

uppe

r lim

it on

SM

(exp.)bbbb (obs.)bbbb (exp.)-τ+τbb (obs.)-τ+τbb

Combined (exp.)Combined (obs.)

(Combined)σ1±Expected (Combined)σ2±Expected = 2.0PlMBulk RS, k/

ATLAS Preliminary-1 = 13 TeV, 27.5 - 36.1 fbs = 2.0PlMspin-2, k/

(k/M̄Pl = 2)∗ mG < 1744 GeV∗∗ at 95% CL∗k: curvature of the warped extra dimension, M̄Pl: the effective four-dimensional Planck scale

∗∗the upper limit on the mass comes from 4b only 18/19

4bbbττcombination

dashed:expectedsolid:observed

Introduction Channels Combination SM HH H self-coupling Resonant Conclusion

Conclusiono A statistical combination of searches for non-resonant and resonantproduction of Higgs boson pairs for the most sensitive channels is presented.

o Using up to 36.1 fb−1 of pp collision data recorded with the ATLASdetector.

o The observed (expected) 95% CL exclusion upper limit on the SM Higgsboson pair production is set to 6.7 (10.4) times the SM prediction.

o The observed (expected) exclusion limit as a function of the Higgsself-coupling scale factor, κλ, allows to constrain values in the range:−5.0 < κλ < 12.1 (−5.8 < κλ < 12.0) at 95% CL.

o The exclusion limits are set on the production cross-section of heavy spin-0and spin-2 resonances decaying into a pair of Higgs bosons, in the massrange 260-1000 GeV.

o No significant data excess is found after the combination.

Thank you for your attention!19/19

backup slides

19/19

Allowed intervals for κλ

Search channel Allowed κλ interval at 95% CLobs. exp. exp. stat.

HH → bb̄bb̄ −10.9 – 20.1 −11.6 – 18.7 −9.9 – 16.4

HH → bb̄τ+τ− −7.3 – 15.7 −8.8 – 16.7 −7.8 – 15.4HH → bb̄γγ −8.1 – 13.2 −8.2 – 13.2 −7.7 – 12.7Combination −5.0 – 12.1 −5.8 – 12.0 −5.2 – 11.4

20/19

Randall-Sundrum graviton model, 4b

) [TeV]KK

m(G

0.3 0.4 0.5 1 2 3

) [fb

]bbbb

→H

H→

KK

G→

(pp

σ

1

10

210

310

410Observed 95% CL limit

Expected 95% CL limit

σ 1±

σ 2±

= 1PlMBulk RS, k/

ATLAS-1=13 TeV, 27.5-36.1 fbs

bbb b→ HH → KKG

) [TeV]KK

m(G

0.3 0.4 0.5 1 2 3)

[fb]

bbbb→

HH

→K

KG

→(p

1

10

210

310

410Observed 95% CL limit

Expected 95% CL limit

σ 1±

σ 2±

= 2PlMBulk RS, k/

ATLAS-1=13 TeV, 27.5-36.1 fbs

bbb b→ HH → KKG

21/19