CO and NO induced of Rh, Pd, and Pt on TiO2(110): ab...

Post on 03-Oct-2020

1 views 0 download

Transcript of CO and NO induced of Rh, Pd, and Pt on TiO2(110): ab...

CO and NO‐induced disintegration of Rh, Pd, and Pt nanoparticles on TiO2(110): ab initio thermodynamics study

Bryan R. Goldsmith, Evan. D. Sanderson, Runhai Ouyang, Wei‐Xue Li

University of California, Santa BarbaraDalian Institute of Chemical Physics

Alternative energyPollution control 

Increasing catalyst durability and recyclability is important

Disintegration

Nanoparticle disintegration is a common phenomena

Reactants

Temperature 

Pressure 

Adatom‐complexes

McClure, S. M.; Lundwall, M. J.; Goodman, D. W. Proc. Natl. Acad. Sci. 2011, 108, 931

Nanoparticle disintegration can cause catalyst deactivation

Rh/SiO2

Changes particlesize distribution

Decreases activity!

Disintegration

Most active size

Or, Nanoparticle disintegration can redisperse agglomerated particles

Rh/SiO2

Disintegration

*

*

Area ratio of facet i

Surface energy of facet i

Metal nanoparticles have different exposed facets

meNP

3 γΔE =R

Surface energyof metal particle

What about the effect of reactants?

Average energy of particle per atom

Energetics of supported nanoparticles

Image courtesy of Michael Engel

meγ = γi ii

f

Nanoparticle

Reactant adsorption lowers particlesurface energy

γmeC=

O

Average energy of particle per atom

[ ]( , )i i ii

me f T P

In presence of gases

meNP

3ΔE =R

Change in surface energydue to reactant adsorption

Ouyang, R.; Liu, J.‐X.; Li, W.‐X. J. Am. Chem. Soc. 2013, 135, 1760

( , , )G R T p G G G disintegration adatom-complex reactant nanoparticle

Disintegration can be modeled by the Gibbs Free Energy

Free energy of disintegrationvia adatom complex formation

M

Ouyang, R.; Liu, J.‐X.; Li, W.‐X. J. Am. Chem. Soc. 2013, 135, 1760

0G disintegration

M

00

0

3( , , ) ( , ) xf x B

pG R T p E n T p k TLn TSR p

medisintegration

γ

Formation energy of adatom complex

Standard gas phase chemical potential

Configurational entropy of complexes

Nanoparticle energy

Ouyang, R.; Liu, J.‐X.; Li, W.‐X. J. Am. Chem. Soc. 2013, 135, 1760

0G disintegration

Disintegration can be modeled by the Gibbs Free Energy

Towards controlling nanoparticle disintegration

Disintegration RedispersionMonomersReactant

Particle Support

Between supported Rh, Pd and Pt catalysts, which one is more susceptible to the disintegration?

Among NO and CO, which one is more efficient for catalyst redispersion?

How sensitive do these results depend on the particle size, temperature and pressure?

Density Functional Theorymodeling using VASP

Projector Augmented Wave method RPBE Functional  Plane wave kinetic energy cutoff = 400 eV Forces converged to 0.03 eV/Å

Vacuum layer thickness of 15 Å

(4x2) Rutile TiO2(110)

Periodic model

111 111( , ) [ ( , )] ( , )me i i i mei

meT P f T PT P

Rh Pt Pd

CO binding on (111) facet

CO chemical potential (eV)

Redu

ction in 

surface en

ergy (e

V/Å2)

Temperature , Pressure , Coverage 

Modeling reduction in surface energydue to reactant adsorption

CO and NO bind strongest to Rh metal compared to Pd and Pt metals

111 111( , ) [ ( , )] ( , )me i i i mei

meT P f T PT P

RhPt

Pd

NO binding on (111) facet

NO chemical potential (eV)

Redu

ction in 

surface en

ergy (e

V/Å2)

Rh Pt Pd

CO binding on (111) facet

CO chemical potential (eV)

Redu

ction in 

surface en

ergy (e

V/Å2)

Temperature , Pressure , Coverage 

Effects of chemical potential and particle size on particle energy

NPE

LESS STABLE

MORE

 STA

BLE

(111)NP

3 γΔE =

R

NPE

contours

In the presence of CO In the presence of NO

eV

eV

Adatom formation energies are large and endothermic

E E E adatom/support support bulkFormation energy

Formation energy = 2.88 eV 2.01 eV 3.12 eV

PdRh Pt

Reactant binding stabilizes formation of adatoms

Formation energy = 0.75 eV ‐1.35 eV

C O

Rh

Rh(CO)2Rh(CO)

Rh(CO)2 and Rh(NO)2 have more favorableformation energies than Rh(CO) and Rh(NO)

Formation energy = 0.75 eV ‐1.35 eV

‐0.02  eV ‐1.58 eV

C O

Rh

N

Rh(CO)2

Rh(NO)2

Rh(CO)

Rh(NO)

Formation energy

Rh Pd Pt

Metal(CO) 0.75 0.26 0.09Metal(CO)2 ‐1.35 ‐0.54 ‐0.69Metal(NO) ‐0.02 ‐0.05 ‐0.10Metal(NO)2 ‐1.58 ‐0.67 ‐0.68

Energies are in eV.

The interaction of CO and NO with Rh adatomis greater than for Pd and Pt adatoms

Exothermic formation energypromotes particle disintegration

Formation energy

Rh Pd Pt

Metal(CO) 0.75 0.26 0.09Metal(CO)2 ‐1.35 ‐0.54 ‐0.69Metal(NO) ‐0.02 ‐0.05 ‐0.10Metal(NO)2 ‐1.58 ‐0.67 ‐0.68

Energies are in eV.

Rh(CO)2 Rh(NO)2

The interaction of CO and NO with Rh adatomis greater than for Pd and Pt adatoms

Exothermic formation energypromotes particle disintegration

Pd(CO)2 Pt(CO)2 Pt(NO)2

Higher order complexes also preferred gas phase

These complexes not observed in experiments bound to support

May play a role in gas phase ripening

Gas phase metal complexesnot considered in disintegration analysis

diameter = 20 Å

In agreement with experiment,Rh(CO)2 predicted to form but not Rh(CO)

[1] Berkó, A.; Szökő, J.; Solymosi, F. Surf. Sci. 2004, 566, 337

Exp. Detected

300 K, 10‐1 mbar

notdetected

Pd and Pt not predictedto form adatom complexes

Rh(CO)2

In the presence of CO

CO chemical potential (eV)

Gibbs free energyof disintegration (eV)

Rh(NO)2Exp.Suggested

300 K, 10‐1 mbar 

Also in agreement with experiment,Rh(NO)2 predicted to form but not Rh(NO)

Pd and Pt not predictedto form adatom complexes

(Under typical conditions)

In the presence of NO

Gibbs free energyof disintegration (eV)

NO chemical potential (eV)

Extreme conditions

diameter = 20 Å

[1] Berkó, A.; Szökő, J.; Solymosi, F. Surf. Sci. 2004, 566, 337

Experimentally[1] Rh(CO)2 ,  d < 60 ÅComputed Rh(CO)2 ,  d < 40 Å

[1] Berkó, A.; Szökő, J.; Solymosi, F. Surf. Sci. 2004, 566, 337

Rh/TiO2(110) more responsive to CO and NO‐induced disintegration than Pd or Pt

Diameter of nanoparticle (Å)

Rh(NO)2Rh(CO)2

Pt(NO)

Pt(CO)Pd(NO)

Pd(CO)

NO is a greater promoter thanCO for NP disintegration 

Gibbs free energyof disintegration (eV)

Disintegration can be predictedusing ab initio thermodynamics

Include gas phase disintegration,  adatom translation, and particle size‐dependent binding energies!

Goldsmith, B. R.; Sanderson, E. D.; Ouyang, R; Li, W. X. , Submitted

Rh(CO)2 / Rh(NO)2

Rh/TiO2(110) most susceptible to CO and NO‐induced disintegration 

NO is a more efficient reactant for particle disintegration than CO

Future work

Acknowledgements

Evan D. SandersonDr. Runhai OuyangProf. Wei‐Xue LiProf. Baron Peters

The Peters group The Wei‐Xue Li group

25