Click to edit Master title st Developing Actuators...

Post on 31-Mar-2020

4 views 1 download

Transcript of Click to edit Master title st Developing Actuators...

Click to edit Master title styleDeveloping Actuators with Rich y

Click to edit Master subtitle styleMotor Properties for Emerging 

HumanoidsClick to edit Master subtitle style

Nikos Tsagarakis

HumanoidsNikos Tsagarakis

Dept. of Advanced Robotics 

Workshop on New Bodies for Cognitive Humanoids,

Istituto Italiano di Tecnologia (IIT)

p g ,Bled, Slovenia, 26th October 2011

Research efforts towards passive compliant systemscompliant systems

VIACTORS

The goal is to design, realize and evaluate new rangeof actuator groups exhibiting variable stiffness,variable damping or full impedance regulationvariable damping or full impedance regulationprinciples

AMARSI

The goal of AMARSi is a qualitative jump toward richmotor behaviour where novel mechanics, control andlearning solutions are integrated with each otherg g

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      2

AMARSI project

Aims to design, realize and test a new generation of humanoidand quadruped robotic platforms, powered by compliantactuators

To study how compliance can be exploited through learningfor more natural locomotion, safer interaction and reduced

tienergy consumption.

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      3

COmpliant HuMANoid (COMAN) Summary of featuresSummary of features

COMAN passive compliant

• a full humanoid robot with a height of 110cm.

COMAN passive compliant humanoid

110cm.• 32 + (1) major degrees of freedom  of 

freedom (arms/legs  and torso and neck)• intrinsic passive compliance in the 

iactuation• Joint torque sensing/active compliance 

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      4

Tsagarakis et al, ICRA 2011

The CompActTM Unit: A fixed passive compliance actuator

• Input pulley: rigidly linked with the gear’s outer shaft • Output three spoke part: linked with the external pulley through a spring 

A fixed passive compliance actuator

arrangementHarmonic drive

Output  pulley Harmonic drive encoder

Spring d fl tideflection encoder

Input  Pulley

F l

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      5

Frameless Brushless motor

Torque Sensor

Tsagarakis et al, ICRA 2009

Fixed compliance actuator

Diameter 70mmLength 80mmPower 190WPower 190W

Gear Ratio 100:1Peak torque 55Nm

Max rotary passive +/-0.18rad

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      6

y pdeflection

Weight 0.52Kg

Leg mechanics

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      7

Compliant legs –First static steps

October 2010

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      8

Compliant legs‐Dynamic walking

January 2011

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      9

COMAN tolerance to impacts

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      10

From legs  to full body COmpliant HuMANoid(COMAN): Quick summary of updates( ) y p

• Passive compliance  added to– Hip joints – Torso joint (Pitch and yaw)

• Upper torso and  armspp– Passive compliance at shoulders and 

elbow

• On board controllerOn board controller • Battery + BMS

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      11

Hip joint 

• Serial mechanismOld design

• Passive compliance at the hip flexion / extension

New HipNew HipJoint New Hip First Prototype

Motion Range (°) Torque (Nm) Motion Range (°) Torque (Nm)

Flex/Ext +110, ‐45 55 ‐110, ‐45 55

Abd/Add ‐60, +20 55 ‐90, +17 55

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      12

Rotation +50,  ‐50 55 ‐80, +80 55

Upper torso and neck

PC104PC104 controller

Neck module

CompliantShoulder flexion

Neck module

Shoulder and neck

t

B k

motorcontrollers

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      13

Battery packand BMS system

Upper arm

• Fully decoupledl h– 3DOF Serial mechanism

• Passive compliance – Shoulder (flex/ext and abd/add) motionsShoulder (flex/ext and abd/add) motions– Elbow flex/ext

SEA JointsJoints

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      14

Walking with efficiency

Conventional ZMP‐Fixed and COM Height based walking Energy consumption

• How to reduce the energy consumption of humanoid walking ?Passive dynamic walkers– Passive‐dynamic walkers

– Active Systems ‐ Efficient trajectories– Use passive compliance to re‐use energy

Learn efficient trajectories

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      15

p p gy

Walking with efficiency through Reinforcement Learning of COMReinforcement Learning of COM

Passively-compliant robot COMAN learning to walk with varying CoM-height

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      16

Kormushev et. al.,  IROS 2011

Evolving policy parameterization

Fixed number of splinespline knotsknots

Dynamically changing number of knotsDynamically changing number of knots

Ad tAdvantages:Faster convergenceEfficient explorationAvoids local optima

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      17

Decreased computation time

Real‐world experiment

Cyclic trajectoriesCyclic trajectories

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      18

Real‐world experiment

• 180 rollouts later… Learned efficient trajectoryLearned efficient trajectory

18% reduction of the energy consumptionin the sagittal planein the sagittal plane

heel strike

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      19

Lowest energy achieved at rollout #126

Variable CoM‐height walking

Fixed CoM height Variable CoM heightFixed CoM‐height Variable CoM‐height

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      20

COMAN tolerance to push and terrain disturbancesdisturbances

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      21

Experimental COM, COP, responses

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      22

Actuation: What is coming next?What is coming next?

Fixed stiffness jointVIACTORS

Variable stiffness joint Variable damperrVariable stiffness joint

)(6 2rfKK ST

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      23

Lever arm principle

Hybrid actuator:Byeong-Sang Kim et al., ICRA 2010

AwAS IIJafari et al ICRA 2011Jafari et al. , ICRA 2011,

Energy Efficient VSA: L.C. Visser et al., ICRA 2010

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      2424AwAS: A. Jafari et al., IROS 2010

CompAct‐VSA: Lever arm with variable pivot point principlepivot point principle

Low Stiffness High Stiffness g

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      2525

CompAct‐VSA: Realization

Variable Stiffness Module AVariable stiffness module

• A) Link/Cam Connection• B) Joint Axis• C) Cam Shaped Lever Arm• C) Cam Shaped Lever Arm• E) Cam Roller• F) Rack/Pinion  FP

• G) Stiffness Motor• H) Springs

)Main joint actuator

• P) Pivot Point

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      2626Tsagarakis et al. IROS 2011

Stiffness & Passive deflection profiles

Stiffness Passive deflection angle range

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      27Irene Sardellitti 27IEEE IROS 2011 A New Variable Stiffness Actuator (CompAct-VSA): Design Modelling and Implementation [nikos tsagarakis@iit it]

Elastic and pivot motor torques

Elastic torqueResistant torque of the pivot motor

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      2828IEEE IROS 2011 A New Variable Stiffness Actuator (CompAct-VSA): Design Modelling and Implementation [nikos tsagarakis@iit it]

Stiffness response:Experimental results

• Pivot Tracking

• Stiffness tracking

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      2929IEEE IROS 2011 A New Variable Stiffness Actuator (CompAct-VSA): Design Modelling and Implementation [nikos tsagarakis@iit it]

VPDA ‐Variable physical damping actuatordamping actuator  

M ti tiMotivation• Facilitates control

– Damps vibration p– Reduces control effort– Inherently passive

• Manage energy of the springManage energy of the spring

Principle & Features• Semi Active Solution• Semi-Active Solution• Introduces “real” physical damping• Piezoelectric actuation

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      3026/10/2011 VIACTORS 2nd Year Review meeting, IIT

SEA + Variable physical damping actuator (VPDA)(VPDA)

PrincipleSemi-Active SolutionI t d “ l” h i l d i

VPDA SEA

Introduces “real” physical dampingPiezoelectric actuation

+Laffranchi et al. ICRA 2010 Tsagarakis et al. ICRA 2009

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      31

VPDA Prototype assembly

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      32

1g

People involved

• Locomotion/Balancing Zhibin Li Luca Colasanto• Locomotion/Balancing: Zhibin Li, Luca Colasanto• Learning for locomotion: Petar Kormushev, Barkan Ugurlu

V i bl I d A t t M tt L ff hi A i J f i• Variable Impedance Actuators: Matteo Laffranchi, Amir Jafari

Petar Kormushev Zhibin Li Matteo Laffranchi Amir Jafari Luca ColasantoBarkan Ugurlu

Workshop on New Bodies for Cognitive Humanoids for Humanoids Humanoids 2011                                                                                      33