Characterization of complex fluids or materials using ...Thank you and see the attached references...

Post on 26-Sep-2020

0 views 0 download

Transcript of Characterization of complex fluids or materials using ...Thank you and see the attached references...

Characterization of complex fluids or materials using small angles scattering techniques

O. Diat

UMR 5257 (CEA/CNRS/UM2/ENSCM)

OutlineBrief and classical introduction to scattering methods

•Form and Structure factors •Porous materials, specific surface •Examples

references

Detector

Incident beam(planar wave)

rdtreeR

EtRdE rkkitRkiS

issrrr rrrrr

),(1

4

1),( ).().(

0 ρπ

ω −−−−=

Hyp Born approx : far field detection, weak scattering (s index for scattering, i for incident)

0r

θ

R

)(rrρ rd

r

ikr

skr

jj btrtr ),(),(rr

∑= ρρ ρρρ −=∆

=−=2

sin4

q and θ

λπ

is kkqrrr

Scattering vectorScatters densityScattering length

Classic:10-1<q(nm-1)<4

Special: 6.10-3<q(nm-1)<20

Fundamental equation of the instantaneous scattering amplitude :the FT of small heterogeneities ( of the dielectrique cte or electronic or nuclear) depending on the radiation, light, x-ray or neutron

∫−−− ∆==

V

rqitRkiSS rdetre

REtqEtRE s

rrrr rrrr.).(

0 ),(1

4

1),(),( ρ

πω

ρρρ −=∆

0r

θ

R

)(rrρ rd

r

ikr

skr

Integral over the irradiated volume

cmcm

eb

eTh

132

0

10.83,24

−==πε

3cm/cmin Thmolecular

rayX bV

Z=−ρ

FEDORS table, polymer engineering, 14 (2), 1974, 147-154

scattering length density for X-ray radiation

Do not work with too much hydrogenated compound in performing SANS!Incoherent scattering depends on energy!

(fm)

scattering length density for neutron radiation

3cm/cmin cohA

molecular

cohneutron b

M

dN

V

b ==ρ

ρH2O = -0.56 1010 cm-2

ρD2O = 6.38 1010 cm-2

ρpolystyrene = 1.41 1010 cm-2

ρD-PS = 6.47 1010 cm-2

Contrast enhanced in neutron scattering if possibility of deuteration!

scattering length density for neutron radiation

3cm/cmin cohA

molecular

cohneutron b

M

dN

V

b ==ρ

For an assembly of discrete particles:

[ ] rdrrRrrdr j

N

jjj

rrrr)()()(

1

ρδρ ∆+−=∆ ∑=

j

j

j Rqi

qG

jrqi

j

Vj

N

jS erderqE

rrrr

444 3444 21

rrr .

)(

).(

1

])([)( ρ∆∝ ∫∑=

∫−−− ∆=

V

rqitRkiS rdetre

REqE s

rrr rrrr.).(

0 ),(1

4

1)( ρ

πω

drjr j

Rj+1Rj

∑j

« Scattering intensity »or differential scattering cross-section

∑∑−−==

Ω j k

RRqikj

kjeqGqGEEd

d

V).(** )()(.

),(1 rrrrrλθσ

j

j

j Rqi

qG

jrqi

j

Vj

N

jS erdertqE

rrrr

444 3444 21

rrr .

)(

).(

1

])([),( ρ∆∝ ∫∑=

Ωd

d

V

),(1 λθσ

« Scattering intensity »or differential scattering cross-section

∑∑−−==

Ω j k

RRqikj

kjeqGqGEEd

d

V).(** )()(.

),(1 rrrrrλθσ

−∆

∆∝

=−∆∆=∆

RdeR

RqI

RrdRrrR

Rqi

S

V j

rr

rr

rrrrvr

rr.2

2

2

)(

)( of ansformFourier tr)( and

)()()()(

ρ

ρ

γρρρ

444 3444 21

rrr rr

jrqi

j

Vj

j rderqG j ).()()( ρ∆= ∫

When j=k

« Scattering intensity »or differential scattering cross-section

∑∑−−==

Ω j k

RRqikj

kjeqGqGEEd

d

V).(** )()(.

),(1 rrrrrλθσ

444 3444 21

rrr rr

jrqi

j

Vj

j rderqG j ).()()( ρ∆= ∫

When j=k

dRqR

qRRR

)sin()(~4

nsorientatio allaver averagean with

functionon distributidistancepair p(R)

22

043421

=

∆∝ ∫ ρπ

j

k

Rik=50

R50 100

p(R)

The scattering intensity is the FT of pair-correlation function p(R)

j

k

Rik=50

FT

« Scattering intensity »or differential scattering cross-section

For diluted system (uncorrelated scatterers and identical)

)(...),(1

)( 2 qPVd

d

VqI partS ρλθσ ∆Φ=

Ω=

For concentred system (identical scatterers) and centrosymmetric

[ ] ∞→→−+=

∆Φ=+=

∫∞

qasdRqR

qRRRg

V

NqS

qSqPVqIV

NqG

V

NqI

S

partSS

s

1sin

1)(41)(factor structure

)()(...)()()(

2

0

2'2

π

ρr

10-2 cm-1

1cm-1

Latex sphere, O. Spalla

Polydispersity effect

)(cm ...).(

),(1 1exp −

∆Ω=

Ω=

sacqabs etT

I

d

d

VI

λψλθσ

22

0

2 )).(1(2. ρϕϕπ ∆−== ∫∞

ssabs dqqIQ

( )2

4

)(2

lim

ρπ ∆

=Σ ∞→qabsqI

Porod law

Invariant (for 2-phase system)

Specific surface

salt = 0.15 M

(O. Spalla, S. Lyonnard Langmuir 02)

Relationship between Imes and Iabs-mat

44** )()()( qqqIqIqI absabs

Corrabs −=

/es

SAXS from CeO2 obtained by a slow evaporation of a colloidal suspension and then calcination at different temperature

50 nm

X-ray scattering

0.01 0.1 1

0.01

0.1

1

10

100

Inte

nsity

(cm

-1)

q (Å-1)

q-4

Mesoporous materials, MCM or SBA type

J. Cambedouzou et al, JAC 2012

Modèle pour le calcul du diagramme de poudre de mésoporeux hexagonaux

w arp

Rg

Rn,m

Rr

rh

n,mpore

uv

q

z

x φ

qh

ψx

u

∑−=Np

pg qAqAqA )()()(

+−= ∑ ∑

i jiijppippgggg

b qRJqRJRqRJqRJRqRJRqRJRqL

qI

,0

21

2011

21

23

23

)()()()()(2)(4)( ρπ

Autre exemple : MCM-41

0.1 0.2 0.3 0.4 0.5 0.6

0.01

0.1

1

10

100

Inte

nsity

(cm

-1)

q (Å-1)

Rp=16.5 ÅRp=15 Å

expRp=18 Å

Caractérisation structurale :

-a = 44.2 Å

-Rp = 16.5 Å

-Désordre 20% paracristal

Estimation surface spécifique

0.1 0.2 0.3 0.4 0.5 0.6

1E28

1E29

1E30

Iq4 (c

m-5)

q (Å-1)

Σ = 8.74e5 cm-1

pour la poudre

Soit:

S=400 m²/g

À comparer avec S BET = 1100 m2/g…

Geopolymerization followed by SAXS

(P. Steins PhD program, CEA/DTCD – Macromolecules 2012 )

•To use always refererence sample and empty cellin similar conditions

•To known the sample thickness and otherscattering parameters

• To get data in absolute units

• to the largest (suitable) q-range as possible (whennecessary)

•If possible to do SAXS and SANS (differentcontrast with same scale!)

To perform scattering experiments

Thank you and see the attachedreferences for more details

• 1. Guinier, A. and Fournet, G. (1955) Small-Angle Scattering of X-rays, Wiley, New York.

• 2. Glatter, O. and Kratky, O., Eds., (1982), Small-Angle X-ray Scattering, AcademicPress, London.

• 3. Feigin, L.A. and Svergun, D.I. (1987) Structure Analysis by Small-Angle X-ray and Neutron Scattering, Plenum Press, New York.

• 4. Brumberger, H., Ed., (1995) Modern Aspects of Small-Angle Scattering, Kluwer Academic, Dordrecht.

• 5. Lindner, P. and Zemb, T., Eds., (2002) Neutrons, X-rays and Light : Scatteringmethods applied to soft condensed matter, Elsevier, Amsterdam.

• 6. Schmidt, P.W. (1995) in Modern Aspects of Small-Angle Scattering, Brumberger, H., Ed., p. 1, Kluwer Academic, Dordrecht.

• 7. « Soft matter characterization: scattering, imaging and manipulation », Pecora, Borsali edited by Springer,

• 8. X-ray data booklet LBL, California• 9. Neutron Data Booklet, ILL/ITU• 10. SASfit software package, PS Institure• 11. O. Spalla et al, JAC 36 (2003) 338 + présentation Bombannes, école d’été• 12. J. Teixeira, JAC 21 (1988), 781• …….