Carrier Properties: I - nanoHUB.orgCarrierProperties1_S16.pdf · Carrier Properties: I Professor...

Post on 06-Sep-2018

222 views 0 download

Transcript of Carrier Properties: I - nanoHUB.orgCarrierProperties1_S16.pdf · Carrier Properties: I Professor...

Lundstrom ECE 305 S16

ECE-305: Spring 2015

Carrier Properties: I

Professor Mark Lundstrom Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA lundstro@purdue.edu

1/19/15

Pierret, Semiconductor Device Fundamentals (SDF) pp. 32-40

Lundstrom ECE 305 S16 2

outline

1.  Effective mass and bandstructure

2.  Doping

3

free electron mass

Lundstrom ECE 305 S16 3

F t( ) υ t( )

F = m0 a

x t( )

m0 = 9.11×10−31 kg

q= 1.6×10−19 C

charge= −q

“effective mass” of electrons

Lundstrom ECE 305 S16 4

F = m0 a → mn* a

“effective mass” for electrons

Si: GaAs:

mn* = 1.18m0

mn* = 0.066m0

“crystal potential”

effective mass of holes

Lundstrom ECE 305 S16 5

F = m0 a → mp

* a

effective mass for holes

Si: GaAs:

mp

* = 0.81m0

mp

* = 0.52m0

energy and momentum (free electron)

6 Lundstrom ECE 305 S16

F t( ) υ t( )

F = m0 a

x t( )

E = 1

2m0υ

2 = p2

2m0

E

p = m0υ

energy and “crystal momentum”

7 Lundstrom ECE 305 S16

E

p = !k

E = p2

2m0

→ E = EC +p2

2mn*

“band structure”

EC

EV

E = p2

2m0

→ E = EV −p2

2mp*

“direct bandgap”

k = 2πλ

energy and “crystal momentum”

8 Lundstrom ECE 305 S16

E

p = !k

E = p2

2m0

→ E = EC +p2

2mn*

EC

EV

E = p2

2m0

→ E = EV −p2

2mp*

“indirect bandgap”

charge carriers in semiconductors

9 Lundstrom ECE 305 S16

1) Electrons in the conduction band (“electrons”):

Free to move about within the crystal Can be treated as Newtonian particles with an effective mass.

2) Holes in the conduction band (“holes”):

Free to move about within the crystal Can be treated as Newtonian particles with a different effective mass.

Lundstrom ECE 305 S16 10

outline

1.  Effective mass and bandstructure

2.  Doping

doping

11

Phosphorus or Arsenic

Lundstrom ECE 305 S16

Gallium or boron

dopants

12 Lundstrom ECE 305 S16

column IV

n-type doping

13

Phosphorus or Arsenic

Weakly bound Easily broken at room temperature

EB = −13.6 eV

EB = −m0q

4

2 4πε0!( )2 eV

KS = 11.8

EB ≈ −0.1eV

mn* = 1.18m0

Lundstrom ECE 305 S16

n-type doping

14

Phosphorus or Arsenic

“Ionized donor” + N D cm-3

Lundstrom ECE 305 S16

N D+ ≈ n

energy band view (n-type)

15

n-doped Si

EC

EV

EG = 1.1eV

n ≈1018cm−3

p = ?cm−3

ED ≈ 0.05 eV

1014 ≤ N D ≤1020 cm−3

Lundstrom ECE 305 S16

N D = 1018cm−3

N D+ = 1018cm−3

n ≈ N D+ = 1018cm−3

p ≈ ?

(T = 300 K)

p-type doping

16

Gallium or boron

Lundstrom ECE 305 S16

p-type doping

17

Gallium or boron

Missing bond

Lundstrom ECE 305 S16

p-type doping

18

Gallium or boron

Ionized acceptor

N A cm-3

_

Lundstrom ECE 305 S16

N A− ≈ p ≈ N A

energy band view (p-type)

19

p-doped Si

EC

EV

EG = 1.1eV

n = ?cm−3

EA ≈ 0.05 eV

N A = 1018cm−3

N A− = 1018cm−3

p ≈ N A− = 1018cm−3

n ≈ ?

p ≈1018cm−3

Lundstrom ECE 305 S16

question

20

1) Which of the following atoms would be an n-type dopant in Si?

a) Ga (a column III) element) b) Si (a column IV element) c) As (a column V element) d) O (a column VI element) e) F (a column VII element)

Lundstrom ECE 305 S16

Another question

21

2) What type of dopant is Si in GaAs?

a) n-type b) p-type c) either n-type or p-type d) neither n-type nor p-type e) don’t know

Lundstrom ECE 305 S16

temperature dependence

22 Pierret, SDF, Fig. 2.13

N-type

P-type

carrier concentration vs. temperature

23 23 Fig. 2.22 from R.F. Pierret, Semiconductor Device Fundamentals

Lundstrom ECE 305 S16 24

outline

1.  Effective mass and bandstructure

2.  Doping