神奈川大学 工学部機械工学科...The present damper developed for a micro vibration...

Post on 23-Oct-2020

5 views 0 download

Transcript of 神奈川大学 工学部機械工学科...The present damper developed for a micro vibration...

  • Vol.47,No.6,November 2016. 1367

    研究論文

    Modeling of an Attenuation Characteristics of the Damper Used for Micro Vibration of a Car Body

    Hiroki Nakamura Toshiaki Kamo Hideki Ohsawa Shota Fukushima Hiroshi Sakanoue Toru Yamazaki

    The present damper developed for a micro vibration suppression of a car body, that uses an oil hydraulic pressure control valve for generating

    damping force, is able to produce a velocity-independence nearly constant damping force unlike an ordinary viscous damper and hence to

    produce a large damping force in a very small velocity range. However, a particular account of the generation mechanism of a damping force has

    not been given so far.

    This paper presents firstly the derivation of equation for attenuation characteristics; nonlinearity of the present damper with a built-in oil

    hydraulic pressure control valve as an attenuation mechanism. Next, linear attenuation coefficient equivalent to the non-linear damping force is

    driven using a describing function method and then the validity of modeling of damping mechanism and its linearization technique is verified

    on the basis of comparison of simulations with experiments.

    : Damping for micro-vibration (B3)

    (1) 1

    Fig.1 Performance damper installed on a car

    *2016 6 8 2016 5 25

    1) 4) 6) (221-8686 3-27-1)

    2) 3) 5) ( ) (438-8501 2500)

    2

    2

    Fig.2 Components of test performance damper

    Conduit High pressure nitrogen gas

    Free piston

    Oil chamber

    Valve plate Piston rod

    Piston head Spring for cancellation

    of gas pressure

    20134020164634⬅TOPに戻る⬅TOPに戻る

    TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

  • 1368 自動車技術会論文集

    車体制振ダンパーの減衰特性のモデル化

    3

    0 1 2 3 4 50

    900

    Velocity [mm/s]

    Dam

    pin

    g F

    orc

    e [

    N]

    Fig.3 Measurements of the damping force vs piston speed

    characteristics of test dampers

    f(t) m

    x

    k F (1)

    2

    F

    2

    2( )

    d xm F kx f t

    dt(1)

    4

    pc

    p

    Flow rate

    Pre

    ssu

    re d

    iffe

    ren

    ce

    Fig.4 General characteristics of pressure control valve

    4 3

    F

    p Q

    p dx/dt F

    Fig.5 Valve plate structure for pressure control valve with a

    built-in test damper

    5 2.1

    5

    (1)

    P0

    pc p

    High

    Middle

    Low

    TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

  • Vol.47,No.6,November 2016. 1369

    車体制振ダンパーの減衰特性のモデル化

    (2) P0

    p (dx/dt 0 )

    (dx/dt 0 )

    (3) F p

    1

    Table 1 Symbol and term of parameters for pressure control valve

    Symbol Term

    Number of valve (flow path)

    Valve opening

    Discharge angle from the valve

    Density of the fluid

    Flow rate

    Discharge coefficient of the valve

    Diameter of the conduit

    6

    x

    Ah Ar

    k -x0 dx/dt 0

    dx/dt 0 2

    Fig.6 Modeling of pressure control valve for generating constant

    damping force

    0)()( 000 PApPAxxk hr (2)

    0 0 0 0r hkx A P A P (3)

    (1)

    F (2) (3)

    0 : rdx

    F A pdt

    (4)

    0 : rdx

    F A pdt

    (5)

    (4) (5)

    sgn rdx

    F A pdt

    (6)

    p Q

    6 dx/dt 0

    7

    Q

    2d v

    pQ nC Dx (7)

    Cd

    0.65 0.7

    kv xv, xv.0

    a v

    Cu (9)

    2

    .0cos ( )v v vap vQ k x x (8)

    .02 sin cos ( )u d v v v vap C C px k x x (9)

    Fig.7 Model of a plate–type pressure

    control valve

    7 90°

    (9)

    xv

    ±dx/dt

    Ah p Ar

    Piston head

    Control orifice

    Conduit

    Valve plate

    Control orifice

    TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

  • 1370 自動車技術会論文集

    車体制振ダンパーの減衰特性のモデル化

    .0( )v v vap k x x (10)

    , p xv

    .0( )v v v v vc

    k x x k xp p

    a a(11)

    pc xv=0

    p

    pc (11)

    .0v vc

    k xp

    a (12)

    (11) xv p

    .0v vv

    v

    ap k xx

    k (13)

    (7) Q p

    .02 2

    2( )

    v vd v d

    v

    d c

    v

    ap k xp pQ nC Dx nC D

    k

    a pnC D p p

    k

    (14)

    Q p

    a, kv,

    4

    Q p 14

    Q dx/dt

    dt

    dxAQ r (15)

    (6) F p

    F dx/dt

    F

    F

    0sgndx dx

    F Fdt dt

    (16)

    F0 pc

    (=Arpc)

    0

    0

    Velocity [mm/s]

    Dam

    pin

    g f

    orc

    e [N

    ]

    Fig.8 Correlation between velocity and damping force

    (16) 8 0

    F0

    F0

    (17) X0

    tXx sin0 (17)

    (16)

    F ceq

    dt

    dxcF eq (18)

    16 dx/dt>0 dx/dt0

    1 (16)

    (18)

    dxdt

    dxcdx

    dt

    dxF eq0 (19)

    ceq F0 X0

    0

    0

    4eq

    Fc

    X (20)

    f

    F0

    -F0

    Grad.:

    TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

  • Vol.47,No.6,November 2016. 1371

    車体制振ダンパーの減衰特性のモデル化

    ( )

    k x x k x

    tsin

    dx

    2

    2sineq

    d x dxm c kx f t

    dt dt (21)

    9

    3

    3 39

    (a) 0.5mm 10, 20, 30, 40, 50Hz 5

    (b) 10Hz 0.5, 0.7, 0.9, 1.0mm 4

    (c) 20Hz 0.5, 0.7, 0.9, 1.0mm 4

    Fig.9 Sinusoidal excitation experimental equipment for test damper

    0.5mm 40Hz 10

    a b

    11

    10 11

    dx/dt

    2.2

    0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09-0.5

    0

    0.5

    Time [s]

    Dis

    pla

    cem

    ent

    [mm

    ](a) displacement

    0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

    0

    Time [s]

    Velo

    cit

    y [

    mm

    /s]

    (b) velocity

    0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

    0

    Time [s]

    Dam

    pin

    g f

    orc

    e [

    N]

    (c) damping force

    Fig.10 Time history waveforms of displacement and damping force

    at 40Hz sinusoidal excitation of 0.5mm amplitude

    8

    P0

    1 3.2

    High

    Middle

    Low

    High

    Middle

    Low

    High

    Middle

    Low

    1000

    -1000

    TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

  • 1372 自動車技術会論文集

    車体制振ダンパーの減衰特性のモデル化

    -800 -400 0 400 800

    0

    Velocity [mm/s]

    Dam

    pin

    g f

    orc

    e [N

    ]

    Fig.11 Correlation between velocity and damping force

    ceq (20)

    ceq

    2 11

    RMS RMS

    3

    0.5mm 10Hz 50Hz

    Table2 Damping coefficients obtained from experimental data

    [Ns/m]

    Type Input frequency

    10Hz 20Hz 30Hz 40Hz 50Hz

    High 26921 15746 11385 9652 9005

    Middle 19980 11421 8601 7435 7054

    Low 10066 6068 4904 4410 4284

    3 3 11

    F0 11

    3 F0 X0

    (20)

    4

    10Hz

    10Hz

    Table3 Damping coefficient calculated by Eq. (20) [Ns/m]

    Input frequency

    10Hz 20Hz 30Hz 40Hz 50Hz

    High 31093 15895 10829 8296 6776

    Middle 18878 9759 6719 5199 4288

    Low 8731 4678 3327 2651 2246

    Table4 Relative error between experiment and proposed model

    Type Input frequency

    10Hz 20Hz 30Hz 40Hz 50Hz

    High 17.4 4.1 0.5 8.8 19.2

    Middle 3.7 11.4 17.7 25.2 34.1

    Low 9.5 16.7 24.5 31.4 38.8

    30Hz

    25%

    (20)

    (1)

    (2)

    (3) (2)

    High

    Middle

    Low

    TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.