Bulk and Interface Properties of Multilayer Systems Edson Passamani Caetano Universidade Federal do...

Post on 22-Dec-2015

215 views 0 download

Tags:

Transcript of Bulk and Interface Properties of Multilayer Systems Edson Passamani Caetano Universidade Federal do...

Bulk and Interface Properties of Bulk and Interface Properties of Multilayer SystemsMultilayer Systems

Edson Passamani Caetano

Universidade Federal do Espírito Santo Physics Departament/Espírito Santo/Vitória/Brazil

530 km

Winter season

Studied problems• Non-collinear magnetic coupling

• Exchange bias effect

Sample preparations• Fe/Mn/Fe trilayers (MBE)

• FeNi/FeMn/FeNi trilayers (Sputtering)

Mössbauer results• Fe/Mn/Fe trilayers• FeNi/FeMn/FeNi trilayers

General Remarks

Introduction• Thin films/Multilayers

• Relevant discorverings in multilayers

Outline

Thin films/Multilayers

If the effusion cells

can be independently controlled

substrate

materials A+B

substrate

material A

substrate

System with one of its dimension in nanometer scale

From especial issue of J3M (1999)~1400

AFM Coupling

GMR

RKKY

Relevant Discoverings in Multilayers

Exchange bias+ Spin-Valves

Studied Systems

Influence of interfacial roughness/alloy on the:

(i) Non-collinear coupling of Fe/Mn/Fe trilayers

(ii) EB effect in FeNi/FeMn/FeNi trilayers

AFM

FM

90o

FM90oAFM

90o

FM

M1 upper Fe

M2 lower Fe

Wegded-sample: Fe(10nm)/Cr(xnm)/Fe(10nm)

Pictures from Grunberg´s group

How do Fe layers interact in the simplest multilayer system?

Fe

Fe

AFM

Yan et al. have found non-collinear coupling in Fe/Mn/Fe (PRB 59 (1999))

Fe (5nm)Mn

Fe(5nm)0.5 nm 0.9 nm 1.4 nm

Sample preparation : MBE (KULeuven)Vacuum during the deposition 6x10-11 mbar

Substrate temperature (Ts) = 50-175 ºC

MgO(001)

4 up to 9 nm – natFe Rate of 0.16 Å/s(lower layer)

57Fe (1nm) deposited in both interfaces with 0.07 Å/s

MgO (001)

Mn (x nm) deposited with 0.04 Å/s

natFe 4 nm

Si – 8 nm

MgO(001)

Ag(100nm)or

• Reflection High Energy Electron Diffraction (RHEED) – [KULeuven]

• Rutherford Back-Scaterring (RBS) – [KULeuven]

•X-ray Diffraction (low and high angles) – [KULeuven]

Structural characterization

• VSM and PPMS – [KULeuven and UFES/Brazil]

• X-ray Magnetic Circular Dicroism (XMCD) – [LNLS/Brazil]

• Ferromagnetic Ressonance (FMR) – [UFG/Brazil]

Magnetic Characterization

Hyperfine Characterization

• Conversion Electron Mössbauer Spectroscopy (CEMS) – [KU Leuven and UFES/Brazil]

Experimental Characterization Methods

57Fe Mössbauer Spectroscopy

+1/2

+3/2

-3/2

-1/2

+1/2-1/2

57Fe nucleus

γ-rays direction Mn

57Fe

MgO(001)

Ideal interface

Interface Bhf

Bhfbulk (natFe layer)

-10 -8 -6 -4 -2 0 2 4 6 8 10

0,5

1,0

Con

tage

m (

u.a.

)

Energia = f(v) (mm/s)

Rel

ativ

e tr

ansm

issi

on (

a.u.

)

V(mm/s)

Transmission mode

MLK 10% 14.4 keV

e-

80% 7.3 keV

90%100% 14.4 keV

Rel

ativ

e em

issi

on

Emission mode

V (mm/s)

MgO/Fe(5nm)/Mn(0.5nm)/Fe(5nm) prepared at different Ts

0.4 nm Fe bulk

0.6 nm Fe bulk 57Fe Mn

Si

MgO(001)

Si

MgO(001)

Field direction

MgO/Ag/(100nm)/Fe(10nm)/Mn(x nm)/Fe(5nm)

x = 1.4 nm

-0.1 0.10

TS=500C

-0.3 0 0.3

M/M

S

x=1.0 nm

0H(T)

Magnetometry: Field Applied // to the Film PlaneMagnetometry: Field Applied // to the Film Plane

0.30-0.3

M/M

s

μoH(T)

x = 1.0 nmET= Eanistopry + EZeeman + Eexchange

2 2( )E C C

C

C C

Coupling energy

exch

MgO/Ag(100nm) substrate (TS = 50o C)

Upper Fe layer

Lower Fe layer

θ=470

θ~900

MgO/Fe(5nm)/Mn(1nm)/Fe(5nm) TS=150oC

MgO/Ag(100nm)/Fe(10nm)/Mn(1nm)/Fe(5nm) TS=50oC

17 % of bulk α-Fe

38% of bulk α-Fe

=47o

=72o

EB effect

2nd problem to be shown

Meiklejohn and BeanJAP 33 (1962) 1328

EB effect - Shifting of the

M(H) curve along field axis

Hc1

Hc2

Heb= [HC1–HC2]/2

Py (30 nm)

Py (10nm)FeMn (15 nm)

WTi (10nm)

WTi (10nm)

Si (100)

Deposition conditions:

Vacuum: 5 x 10-8 TorrArgon working pressure (PW): 2, 5 and 10 mTorr;Applied field during deposition ( 460 Oe)TS: 20 oC

Sample preparation: Sputtering (CBPF)

Py=Ni80Fe20

AFM

FM

FM

Samples: A2, A5 and A10 PW= 2, 5 and 10 mTorr

Interfacial effect/EB system

Heb values reduce with roughness

[Nogués et al., PRB 59 (1999) 6984]

Heb values increase with roughness

[Uyama et al., J. Magn. Soc. Jpn. 21 (1997) 911]

Samples: A2, A5 and A10 PW= 2, 5 and 10 mTorr

X-ray Reflectivity data

0 1 2 3 4 5 6 7 80,010,1

110

1001000

10000100000

1000000

2 (degree)

A2

0,11

10100

100010000

1000001000000

A5

Rel

ativ

e in

tens

ity (

a.u.

)

0,11

10100

100010000

1000001000000

A10

X-ray Reflectivity results

Sample Thickness and roughness (nm) from the fits

A2 Py(30.5)/0.3/FeMn(13.6)/0.7/Py(10.1)

A5 Py(30.6)/0.8/FeMn(13.8)/1.1/Py(10.3)

A10 Py(30.2)/1.0/FeMn(13.1)/2.7/Py(10.1)

Py

Py

FeMnUpper Interface

Lower interface

Si/WTi/Py(30)/FeMn(15)/Py(10)/WTiPW= 2, 5 and 10 mTorr (A2, A5 and A10)

-200 -100 0 100 200-800

-600

-400

-200

0

200

400

600

800

Heb2

M

(e

mu

/cm

3 )

H (Oe)

A2 A10

Heb1

A2 A10

Samples: A2 and A10 PW= 2 and 10 mTorr

Sample Heb1 (Oe) HC1(Oe) Heb2(Oe) HC2(Oe)

A2 41.4 3.1 116.1 8.4

A5 25.7 3.7 101.6 11.2

A10 29.0 5.5 62.4 20

Magnetometry

Si/WTi/Py(30)/FeMn(15)/Py(10)/WTiPW= 2, 5 and 10 mTorr (A2, A5 and

A10)

Heb values decrease while

Hc values increase with roughness

Si/WTi(10)/Py(30)/FeMn(15)/Py(10)/WTi(10)

PW= 2, 5 and 10 mTorr (A2, A5 and A10)

ComponentsHyperfine

parametersSamples

A2 A5 A10

Ni80Fe20 (Py)

Bhf (T) 29 2 29 1 28 2

(mm/s)0.04 0.05

0.05 0.01 -0.02

0.09

A % 44 39 35

FeMn +AFM and/or PM interface

phases

A % 56 57 58

FM interfacialalloy

Bhf (T) - 16.6 0.1 16.2 0.4

(mm/s) - -0.08 0.01-0.06

0.01

A % - 4 7

Hyperfine parameters

“chemical roughness (alloy) ” exceeds the interfacial roughness

Ni80Fe20 52%

Fe50Mn50 48%

Calculated fraction

Proposal model Transversal view

Ni

Fe

Roughness and/or alloy

FM phase at the interface

AFM (FeMn + (NiFe)xMny)

Mn

Fase PMAt the interface

Rich- Fe – phase from the NiFe

(sextet)

NiFe

NiFe

FeMn

Py (30 nm)

Py (10nm)FeMn (15 nm)

WTi (10nm)

WTi (10nm)

Si (100)

• In trilayer systems, the upper interface is usually rougher than the lower one. In addition, the “chemical roughness (alloy)” is in general larger than the interfacial/surface roughness.

• The magnetic coupling angles in Fe/Mn/Fe trilayers are related to their interfacial roughnesses and therefore it is not due to the quasi-helicoidal AFM state of Mn layer in the trilayer.

• Bulk magnetic properties of multilayer systems are intrinsically associated with their interface properties.

General Remarks

• The Py/FeMn/Py trilayers Heb 1/roughness and HC roughness. Theirs values are intrinsically related to the fraction of each Mössbauer component.

Prof. Dr. André Vantomme (KULeuven-Belgium)

Prof. Dr. Elisa Baggio-Saitovitch (CBPF/Brazil)

Prof. Dr. Fernando Pelegrini (IFG/Brazil)

Dr. Bart de Groot (KULeuven-Belgium)

Dr. Bart Croonenborghs (KULeuven-Belgium)

Dr. Valberto Pedruzi Nascimento (CBPF/Brazil)

MSc. Breno Segatto (UFES/Brazil)

MSc. Francisco Almeida (KULeuven-Belgium)

UFES KULeuven IF - UFGCBPF

Sponsors:

Thank you!

NiFe

NiFe

phase FM

H direction during deposition

Spins FM planar

Spins AFM planaresFeMn

Spins non-colinear

x Frustation

phase PM and AFM (FeMn and NiFeMn)

Ni(+)FeMn

PM clusters

Spins AFM planarNiFeMn

x

x

x

Spins FMperpendicular

Magnetic structure model