Bolivia driven vibrated piles 04 30.compressed

Post on 15-Aug-2015

192 views 5 download

Tags:

Transcript of Bolivia driven vibrated piles 04 30.compressed

Vibrated  and  Driven  Piles

K.  R.  Massarsch Geo  Risk  &  Vibration  AB,  Stockholm,  Sweden  

Overview

•  Pile  classification  systems •  Driven  pre-­‐‑formed  piles •  Advantages  and  disadvantages •  Aspects  of  pile  installation •  Aspects  of  driven  pile  installation •  Vibratory  driving

Pile  Classification  System 1.  Method  of  installation:  bored/augered,  

continuous  augered,  driven,  screw-­‐‑in 2.  Degree  of  displacement:  large,  small,  non   3.  Pile  material:  concrete,  steel,  timber,  

composite 4.  Manufacture:  in-­‐‑situ,  preformed,  combined 5.  Support  during  pile  installation:  no  

support,  temporary  casing,  permanent  casing,  drilling  mud,  soil  concrete/grout

6. Enlarged  base

Driven  Pre-­‐‑formed  Piles Probably  the  oldes  pile  installation  method

Driving  of  Concrete  Piles

Advantages  of  Driven  Pile  Installation

•  Material  of  pile  can  be  inspected  before  it  goes  into  the  ground

•  Stable  in  "ʺsqueezing"ʺ  ground •  Low  risk  of  damage  by  ground  heave  

when  driving  adjacent  piles •  Construction  procedure  unaffected  by  

ground  water •  Can  be  readily  carried  above  ground  level,  

especially  in  marine  structures •  Can  be  driven  in  very  long  lengths  

•  Hard  driving  may  damage  or  break  pile •  Uneconomical  if  pile  design  governed  by  

handling/driving  stresses  rather  than  permanent  loading

•  Noise  and  vibration  during  driving •  Displacement  of  soil  during  pile  driving  

Cannot  be  driven  in  very  large  diameters •  End  enlargements  not  always  advantages •  Cannot  be  driven  in  low  headroom  

conditions  

Disadvantages  of  Driven  Piles

Aspects  of  Pile  Installation

Driving  methods:  impact  methods   or   vibratory  driving        

Driving  components:  pile  shoes,   jointing,  splicing,  pile  helmets  &   packing    

Driving  aids:  pre-­‐‑blasting,  pre-­‐‑drilling,   pre-­‐‑driving,  jeQing    

Post  treatment:  re-­‐‑driving,  grouting

Pile  Driving  Hammers

Vibratory  hammers Electric  vibrators Hydraulic  vibrators

Impact  hammers Air  and  steam  hammers:  single-­‐‑acting  hammers,  double-­‐‑acting  hammers Diesel  hammer Drop  hammer Hydraulic  hammer

Diesel  Hammer                 Hydraulic  Hammer

Pile  Materials

Timber Concrete:  reinforced  and  prestressed Steel:  tubular,  steel  profiles,  sheet  piles Composite:  steel  –  concrete  -­‐‑  timber  

Timber   Concrete

Steel  Piles

Manufacture  of  Pile

Cast  in-­‐‑situ:  concrete Preformed:  timber,  steel,  concrete Combined:  concrete,  steel  etc.   Jointed  piles

Cast  in-­‐‑situ  Driven  Pile

Pre-­‐‑formed  Spun  Piles

Swedish  Concrete  Pile  Joint

Driving  Aids

Pre-­‐‑drilling:  auger Pre-­‐‑driving:  vibrator  or  hammer JeTing:  water  and/or  air Grouting:  cement  and/or  bentonite Pre-­‐‑blasting

Pre-­‐‑boring  with  Auger

Grouted  Driven  Pile

JeQing  of  Driven  Piles

Vibratory  Driving  Systems

Significance  of  Vibration  Frequency  for  Driving  of  Piles  and  Sheet  Piles  

Why  is  Vibration  Frequency  of  Importance  

for  Pile  Driving?

•  Driving efficiency: pile penetration is affected.

•  Intensity of ground vibrations: emitted to surroundings.

•  Pile capacity: change of stress conditions in soil.

FV = Me ω2

Centrifugal  Force,  Fv

s =Me

mt

Displacement  Amplitude,  s

Me =ms eEccentric  Moment,  Me

ω  =  2π  f

Circular  frequency,  ω

Important  Vibrator  Parameters

Electronic  Monitoring  and  Control

Geophone

0

10

20

30

40

14:22:26 14:23:18 14:24:10 14:25:02

DEPTH, m

TIME, h:min:s

Depth m Depth m

Pile  Penetration  Depth

0

10

20

30

40

14:22:26 14:23:18 14:24:10 14:25:02

PRESSURE, MPa

TIME, h:min:s

Frequency Hz Depth m

DEPTH, m

Variation  of  Frequency

0

10

20

30

40

0

10

20

30

40

14:22:26 14:23:18 14:24:10 14:25:02

FREQUENCY, Hz PRESSURE, MPa

TIME, h:min:s

Pressure MPa Frequency Hz

Depth m

DEPTH, m

Variation  of  Hydraulic  Pressure

0

10

20

30

40

0

10

20

30

40

14:22:26 14:23:18 14:24:10 14:25:02

FREQUENCY, Hz VELOCITY, mm/s PRESSURE, MPa

TIME, h:min:s

Pressure MPa Frequency Hz

Depth m Geo z mm/s

DEPTH, m

Ground  Response  due  to  Frequency  Variation

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 VER

TICAL  VIBRA

TION  VEL

OCITY  ,  m

m/s

VIBRATION  FREQUENCY,  Hz

Vertical

Penetration

Ground  Vibrations  during  Vibratory  Driving

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 VER

TICAL  VIBRA

TION  VEL

OCITY  ,  m

m/s

VIBRATION  FREQUENCY,  Hz

Vertical

RESO

NANCE

Ground  Vibrations  during  Vibratory  Driving

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 HORIZO

NTA

L  VIBRA

TION  VEL

OCITY,  m

m/s

VIBRATION  FREQUENCY,  Hz

Radial

Ground  Vibrations  during  Vibratory  Driving

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 HORIZO

NTA

L  VIBRA

TION  VEL

OCITY,  m

m/s

VIBRATION  FREQUENCY,  Hz

Tangential

Ground  Vibrations  during  Vibratory  Driving

F GEOPHONE

Toe resistance

Shaft resistance

mS

kS dS

Calculation  of  Resonance  Frequency  of  Pile  Vibrated  into  a  Soil  Deposit

Calculation  of  Resonance  Frequency  of  Pile  Vibrated  into  a  Soil  Deposit

mP

mS

kS

kT dT

dS

dM

kM

mS

kS

kT dT

dS

dM

kM

Calculation  of  Resonance  Frequency  of  Pile  Vibrated  into  a  Soil  Deposit

mP

F(t)

uP  (t)

F(t)

uP  (t)

Calculation  of  Resonance  Frequency  of  Pile  Vibrated  into  a  Soil  Deposit

mP

mS

kS

kT dT

dS

dM

kM

uS  (t)

FREQUENCY,  Hz

DISPL

ACEM

ENT,  

mm

Eccentric  moment:  me=10  kgm  -­‐‑  Shear  wave  speed:  cS=225  m/s:  

Resonance  frequency

Absolute

Imaginary

Real

Resonance  Frequency  of  Vibrating  Pile

Start-­‐‑up  of  vibrator  without  vibrations  to  required  speed  

without  vibrations

Resonance-­‐‑free  Vibratory  Driving

Gradual  increase  of  vibration  amplitude  rotating  lower  row  of  

masses  against  upper  row.

Resonance-­‐‑free  Vibratory  Driving

Maximum  vibration  amplitude  of  vibrator  at  largest  eccentricity

Resonance-­‐‑free  Vibratory  Driving

Vibration-­‐‑free  Start-­‐‑up  of  Vibrator

Sheet  Pile  Driving  in  Vibration-­‐‑sensitive  Area

Sheet  Pile  Driving  in  Vibration-­‐‑sensitive  Area

Monitoring  of  ground  vibrations  by  geophone Sheet  pile  driving  with  resonance-­‐‑free,  high  frequency  vibrator

Vibration-­‐‑sensitive  

embankment

Sheet  Pile  Driving  in  Vibration-­‐‑sensitive  Area

Monitoring  of  ground  vibrations  by  geophone Sheet  pile  driving  with  resonance-­‐‑free,  high  frequency  vibrator

Summary  and  Conclusions

•  Driven piles are in many cases a cost-effective foundation solution.

•  Driving piles requires competent personnel and suitable equipment.

•  Vibratory driving can be efficient in suitable ground conditions.

•  By adjusting the operating parameters of modern vibrators, pile driving and ground compaction can be optimized.

•  The performance of vibrators can be monitored and opitmized using different types of sensors.

Thank  You!

SWEDISH  PILE  DRIVING  TECHNOLOGY